设A=,其中a不等于0,b不等于0,则矩阵A的秩=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:20:43
设A=,其中a不等于0,b不等于0,则矩阵A的秩=
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.

设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-

设a,b=R+,且a不等于b,求证 2ab/a+b

a,b=R+,且a不等于b,a+b>2根号(ab)所以1/(a+b)

设f(x)对一切x不等于0满足af(x)+bf(1/x)=c/x,其中a,b,c为常数且a的绝对值不等于b的绝对值,求f

因为af(x)+bf(1/x)=c/x①令x=1/x那么af(1/x)+bf(x)=cx②由①*b-②*a(a²-b²)f(x)=ac/x-bcx因为a的绝对值不等于b的绝对值所以

设函数f(x)=x^3+ax^2-a^2x+1,g(x)=ax^2-2x+1,其中实数a不等0

只有一个公共点则x^3+ax^2-a^2x+1=ax^2-2x+1只有一个解x^3+(2-a^2)x=0x(x²+2-a²)=0x=0是解所以x²+2-a²=0

设A是n阶矩阵,若Ax=b对任何b都有解,A的行列式不等于0 求证!

由已知,对b取εi=(0,...,1,...,0)^T,i=1,2,...,n方程组Ax=εi有解所以ε1,...,εn可由A的列向量组线性表示所以n

设函数f(x)=x³-3ax+b(a不等于0)

1:f'(x)=3x^2-3a由题意知f'(2)=12-3a=0,且f(2)=8-6a+b=8解得a=4,b=242:f'(x)=3x^2-3a,若a0解得x>根号a或x

设f(x)=lgx,a>0,b>0,且a不等于b,求证f(a)+f(b)/2

f(a)=lga;f(b)=lgb;f(a)+f(b)=lga+lgb=lg(a*b)因为(a+b)^2>=4ab;f(x)=lgx为增函数;所以lg(a*b)

设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),

AB^T的特征值为B^TA,0,0,...,0且由CA=AB^TA=(B^TA)A知A是C的属于特征值B^TA的特征向量.因为Q是正交矩阵所以B^Tqi=0所以Cqi=AB^Tqi=0所以q1,...

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=0,其中A不等于0,则B=0成立么?

A,B为n阶方阵,且AB=0,其中A不等于0,B=0不成立(A-B)^2=A^2+B^2也不成立(A-B)^2=A^2+B^2-AB-BA,-AB-BA这两项是不能随便丢弃的,并且很多时候AB不等于B

设集合A={a,a+d,a+2d},B={a,aq,aq2},其中a不等于0,A=B,求q.

a+d=aqa+2d=aq^2a=2aq-aq^21=2q-q^2q=1舍a+d=aq^2a+2d=aqa=2aq^2-aq1=2q^2-q2q^2-q-1=0q=-1/2orq=1舍q=-1/2

设函数f(x)=|logax|+b,其中a,b为常数,a>0,且a不等于1.若方程f(x)=x^-1有解,则b属于(负无

借助于数形结合,考虑两个函数的图象相交情况再问:我数学很差你直接给我答案,好不好啊再答:f(x)=|logax|+b和y=x^-1的图像有交点,将两个函数图像画到同一个直角坐标系下观察一下,注意对a分

设y=f(x)=ax+b/cx-a,证明x=f(y),其中a,b,c为常数,且a^2+bc不等于0

1、从y==ax+b/cx-a解出x,用y表示2、计算f(y)3、比较两者关系,判断相等

设3a的平方-6a-11=0,3b的平方-6b-11=0,且a不等于b,求a的4次方+b的4次方的值,若没有a不等于b这

解题思路:解方程求出a,b,把所求代数式变形后,将a,b的值代入,计算出结果.解题过程:

设a,b为实数,且ab不等于0,且满足(a/1+a)+(b/1+b)=(a+b)/(1+a+b),求a+b的值

a+b=-2a/(1+a)+b/(b+1)=(a+b)/(a+b+1)通分,整理,得ab(a+b+2)=0所以a+b+2=0a+b=-2

初一2道分式方程题1.a/x-a +b=1(b不等于1)注:a/x-a是x-a分之a2.m/x -n/x+1=0(m不等

a/x-a+b=1=>a+b(x-a)=x-a=>a+bx-ab=x-a=>bx-x=ab-2a=>(b-1)x=ab-2a=>x=a(b-2)/(b-1)且x不等于0m/x-n/x+1=0m-n+x

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0