设A422 242 224 求正交矩阵P,使P-1AP为对角矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:06:27
设A422 242 224 求正交矩阵P,使P-1AP为对角矩阵
设A,B是两个n阶正交矩阵,且AB的行列式为-1.n为奇数 求A-B的行列式

题目应该是哪里抄错了,下面构造例子说明这一点.设2阶矩阵C(t)=[cos(t),sin(t);-sin(t),cos(t)],可知C(t)正交且|C(t)|=1.对n=3,考虑3阶分块矩阵A=[-1

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

有点急,求高手解答!设矩阵A=1 -1 -1 -1 1 -1 -1 -1 1,求正交矩阵T使T-1AT=T'AT为对角矩

1-1-1-11-1-1-11|A-λE|=1-λ-1-1-11-λ-1-1-11-λ=-(λ+1)(λ-2)^2所以A的特征值为-1,2,2解出(A+E)X=0的基础解系:a1=(1,1,1)^T解

设二次型f(x1,x2,x3)=X^TAX,A中各行元素之和为3,求f在正交变换X=QY下的标准型

实际上就是求矩阵A的特征值因为A中各行元素之和为3所以A*(1,1,1)T=3(1,1,1)T所以(1,1,1)T是属于特征值3的一个特征向量只能做到这里了还有什么条件吧再问:这就是全部的题目,让求的

线性代数!设A B都是n阶正交方阵,证明 AT A-1 AB也是正交方阵.书上的定理,求证明过程.

只要证明(ATA-1AB)T(ATA-1AB)=单位阵就行用转置的性质(AB)T=BTAT和ATT=A的到(ATA-1AB)T=BTATA-1TA,用它乘上ATA-1AB用条件A,B都是n阶正交阵所以

矩阵A经过正交变换变成标准型,求正交变换,

ank(A)=1是没错,但是A的特征值是11,0,0而不是7,0,0(看一下trace(A)就知道了)

设A与B正交相似,B与C正交相似,证明A与C正交相似

存在正交方阵D,E,使D‘AD=BE'BE=C则E'D'ADE=E'BE=C而E'D'=(ED)'故AC正交相似

设A= ,求一个正交矩阵P,是的P^(-1)AP为对角阵

λE-A=λ-2000λ-10-1λ|λE-A|=λ^2(λ-2)-(λ-2)=(λ+1)(λ-1)(λ-2)所以矩阵A的特征值为λ1=-1,λ2=1,λ3=2当λ1=-1时,方程组(λE-A)X=0

求正交矩阵 

这个麻烦请稍候...再答:解:|A-λE|=1-λ242-2-λ2421-λr1-r3-3-λ03+λ2-2-λ2421-λc3+c1-3-λ002-2-λ4425-λ=-(3+λ)[(-2-λ)(5

设矩阵A=(上面1 0 1中0 1 1 下面1 1 2)求A的正交相似对角阵,并求出正交变换阵P.

|A-λE|=1-λ0101-λ1112-λr1-r21-λ-(1-λ)001-λ1112-λc2+c11-λ0001-λ1122-λ=(1-λ)[(1-λ)(2-λ)-2]=(1-λ)(λ^2-3λ

设A.和B都是正交阵,证明AB也是正交阵

A、B是正交矩阵,那么AA'=EBB'=E(AB)*(AB)'=AB*B'A'=A*(BB')*A'=A*E*A'=AA'=E所以AB也是正交矩阵

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

设A为正交矩阵,则A的行列式=?

±1再问:怎么算?再答:

设A为正交矩阵,证明A^2也是正交矩阵

正交矩阵的定义:设A为n阶方阵,若A'A=E,则称A为正交矩阵.其中A'表示A的转置矩阵.证明:因为A为正交矩阵,所以A'A=E由转置的性质(AB)'=B'A'所以有(A^2)'(A^2)=(A'A'

线性代数:求一个正交变换

答案中的第二个正交向量是(1,-2,-5/2)我算的是(-2/5,4/5,1)这两个是差-2/5倍的两个解向量,都对.但单位化后应该相同,乘2消去分母(2,-4,-5),长度为根号(2^2+4^2+5

设A与B都是N阶正交矩阵试证AB也是正交矩阵

只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图

设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.

|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,

设A B都是n阶正交方阵,证明:

A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-

设A是正交矩阵,证明A^*也是正交矩阵

由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵,((A^-1)^T(A^-1)=(A^T)^-1(A^-1)=(AA^T)^-1=E^-1=E),所以(A*)^TA*=(|A|A^-1)^

设A为正交矩阵,证明|A|=±1

由A为正交矩阵的定义,有A^T*A=E两边取行列式,有|A^T*A|=|A^T|*|A|=|E|即|A|^2=1,|A|=±1