设A3=E,则A-1=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:16:52
设A3=E,则A-1=
设a2+a-1=0,求2a3+4a2+1998的值.

∵a2+a-1=0,∴a2+a=1,∴2a3+4a2+1998=2a3+2a2+2a2+1998=2a(a2+a)+2a2+1998=2a×1+2a2+1998=2(a2+a)+1998=2+1998

请问3阶设3阶方阵A的特征值为1,2,0,其相应的特征向量a1,a2,a3.B=A^3-2A+3E,求B^-1的特征向量

有定理的若α是A的属于特征值λ的特征向量则α是f(A)的属于特征值f(λ)的特征向量所以a1,a2,a3仍是B=f(A)的特征向量若α是A的属于特征值λ的特征向量,且A可逆则α是A^-1的属于特征值1

设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3

答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

设a、b、c、d、e的值均为0、1、2中之一,且a+b+c+d+e=6,a2+b2+c2+d2+e2=10,则a3+b3

你看平方和是10,比6大4.因为0和1的平方都不变,因此这个变化是2造成的.2平方是4,多了2,现在多了4,那么就一定是2个2.有了2个2,那么剩下三个加起来应该是2,这样五个数加起来才是6.三个数加

设A=2a3+4a2-a-3,A+B=3a+4a3,则B=______.

∵A+B=3a+4a3,A=2a3+4a2-a-3,∴B=3a+4a3-(2a3+4a2-a-3)=3a+4a3-2a3-4a2+a+3=2a3-4a2+4a+3.故答案为:2a3-4a2+4a+3.

设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?

(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!

设4阶方阵A=(a1,a2,a3,a4) ,B=(B1,a2,a3,a4),且|A|=1,|B|=2 ,则|A+B| .

|A+B|=|(a1,a2,a3,a4)+(b1,a2,a3,a4)|=|(a1+b1),2a2,2a3,2a4)|=2*2*2|(a1+b1),a2,a3,a4|=8[|a1,a2,a3,a4|+|

5、设4阶方阵A=(a1,a2,a3,a4) ,B=(B1,a2,a3,a4),且|A|=1,|B|=2 ,则|A+B|

|A+B|=|(a1,a2,a3,a4)+B1,a2,a3,a4)|=|(a1+b1),2a2,2a3,2a4)|=2*2*2|(a1+b1),a2,a3,a4|=8{|a1,a2,a3,a4|+|(

设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a

选项A.|a1-a2,a2-a3,a3-a1|=|a1-a2,a2-a3,a2-a1|=0B.|a1-a2,a2-a3,a3-a1|=.|a1-a2,a1-a3,a3-a1|=0选项C.|a1+2a2

设a=7−1,则3a3+12a2-6a-12=(  )

3a3+12a2-6a-12=3a3+3a2+9a2-6a+1-13=3a2(a+1)+(3a-1)2-13当a=7−1时原式=37-13=24.故选A.

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

已知三阶矩阵A的特征值为1,—1,2,设矩阵B=A3-2A2+3E,试计算|B|

三阶矩阵A的特征值为1,—1,2,而B为A的多项式,所以B有特征值1-2+3=2,-1-2+3=0,8-8+3=3故|B|=0

设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax

秩r(A)=3,那么齐次方程组Ax=0有4-3=1个解向量,现在a1=a2+a3所以a1-a2-a3+0*a4=0即Ax=0的解为(1,-1,-1,0)^T又β=a1+a2+a3+a4所以A*(1,1

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设n阶矩阵A满足Am=0,m是正整数,证:E-A可逆,且(E-A)=E+A+A2+A3+……Am-1

利用公式E=E-A^m=(E-A)(E+A+A^2+A^3+……A^m-1)可得.

设n阶方阵A满足A^2+A+2E=0,则(A+E)^-1=?

由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.

设A3的列向量组为a1,a2,a3,且|A|=3,B=(2a1+a3,a3,a2),则|B|=?

|B|=|2a1+a3,a3,a2|第1列减第2列=|2a1,a3,a2|第1列提出2,第2,3列交换=-2|a1,a2,a3|=-2|A|=-6