设a1=(1 2 3 ),求非零向量,a2,a3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:10:10
存在一组不全为0的数1,1,1使得1(a1-a2)+1(a2-a3)+1(a3-a1)=0
(b1,b2,b3,b4)=(a1a2a3a4)KK=1111011100110001因为|K|=1,所以K可逆所以r(b1,b2,b3,b4)=r(a1a2a3a4)=4所以b1,b2,b3,b4线
1+b2+……bn=(n-1)(a1+a2+……an)a1+a1+……an=(b1+b2+……bn)/(n-1)ak=(b1+b2+……bn)/(n-1)-bk(k为1至n中的某个数)于是向量组[a1
因为R(A)=3所以Ax=0的基础解系含4-3=1个向量所以2a1-(a1+a2)=(2,3,4,5)^T是Ax=0的基础解系所以Ax=b的通解为(1,2,3,4)^T+k(2,3,4,5)^T
用定义证明设有k1B1+k2B2+k3B3=0,即k1(a1+a2-2a3)+k2(a1-a2-a3)+k3(a1+a3)=0,于是有(k1+k2+k3)a1+(k1-k2)a2+(k1-k2+k3)
A(a1,a2,a3)=(a1+a2,-a1+2a2-a3,a2-3a3)=(a1,a2,a3)KK=1-101210-1-3等式两边取行列式,由于|a1,a2,a3|≠0,所以|A|=|K|=-8.
令k1b1+k2b2+...+krbr=0带入b1=a1,b2=a1+a2,...,br=a1+a2+...+ar整理得:(k1+k2+...+kr)a1+(k2+k3+..+kr)a2+..+kra
是r+1再问:b应该是(该向量组中任意r+1个向量线性相关)再答:那b正确
这是线性代数啊,秩为3小于4说明方程的通解为齐次通解加上非齐次特解,其中Aa1=b,Aa2=b,Aa3=b,所以A(-a2-a3+2*a1)=0,及其次的通解为才c(-a2-a3+2*a1)T=c(2
反证法,假设他们线性相关,设个K值,则会得出a1.a2.a3也线性相关,与前提矛盾,证明完毕——自己试一下,个人觉得没必要把这个题目说的太透再问:能不能详细写一下过程?谢谢了再答:好吧,假设有不全为零
设k1b1+k2b2+k3b3=0,然后把b1=a1+a2+a3等都代进去,整理一下,证出k1,k2,k3都是0就可以了.
因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]
(b1,b2,b3,b4)=r(a1,a1-a2,a1-a2-a3,a1-a2-a3-a4)=r(a1,-a2,-a2-a3,-a2-a3-a4)=r(a1,a2,a3,a4)=4,所以b1,b2,b
证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b
证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b
线性无关.反证法.假设mb1+nb2+rb3=0,则ma1+n(a1+a2)+r(a1+a2+a3)=0;则(m+n+r)a1+(n+r)a2+(r)a3=0,与向量组a1,a2,a3线性无关矛盾.故
向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B
可以算出:a1=b1,a2=b2-b1,a3=b3-b2,...,am=bm-b(m-1),所以向量组a1,a2,...am与b1,b2...bm等价