设a1,...,am,b1,...,bn,(m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:34:46
设a1,...,am,b1,...,bn,(m
一、设实数a1,a1,a3,b1,b2,b3满足①a1+a2+a3=b1+b2+b3②a1a2+a2a3+a1a3=b1

(1)设λ=f(x)-g(x)=b1b2b3-a1a2a3,则λ=f(a1)-g(a1)=-(a1-b1)(a1-b2)(a1-b3)≥0这是同一值 当x为任意值是λ=f(x)-g(x)=b1b2b3

已知数列{an},{bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5,a1,b1∈N*,设c

∵a1+b1=5,a1,b1∈N*,∴a1,b1有1和4,2和3,3和2,4和1四种可能,当a1,b1为1和4的时,c1=ab1=4,前10项和为4+5+…+12+13=85;当a1,b1为2和3的时

excel中A1大于100,B1等于V,A1小于100,B1等于A,用公式怎么设

1输入=if(a1>100,"V","A")你没指明如果等于100怎么办.所以如果你在A1输入100,会按小于显示成A

Excle 中A1>=1 B1 2 否则B1 1 A1=0 B1 0 公式怎么设

=IF(A1=0,B10,IF(A1>=1,B12,B11)).公式意思:如果A1等于0,就显示B10,如果A1大于等于1,就显示B12,否则就显示B11.由于问题中没有标点,可能理解不对,你可以根据

求行列式,设a1 b1 c1;a2 b2 c2;a3 b3 c3=3 ,则 a1+3b1 c1 b1;a2+3b2 c2

a1+3b1c1b1a2+3b2c2b2a3+3b3c3b3=第1列减3倍的第3列a1c1b1a2c2b2a3c3b3第2,3列交换=-1*a1b1c1a2b2c2a3b3c3=-3.

设向量a1 a2 a3线性无关,B1=a1+a2 B2=a2+a3 B3=a3+a1...证明B1.B2.B3线性无关

证明:设k1(a1+a2)+k2(a2+a3)+k3(a3+a1)=0则(k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0由已知a1,a2,a3线性无关.所以有k1+k3=0k1+k2=0

证明向量组b1,b2..,bm与向量组a1,a2,..,am有相同的秩

(b1,...,bm)=(a1,...,am)KK=011...1101...1110...1.111...0因为|K|=(n-1)(-1)^(n-1)不等于0所以K可逆所以R(b1,...,bm)=

设向量组a1,a2,a3 线性无关,又向量组b1=a1 ,b2=a1+a2,b3=a1+a2+a3,证明b1,b2,b3

证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b

设a1,a2...as和b1,b2...bs是两个线性无关的n维向量组,并且每个a1和b1都正交,证明a1...as,b

设k1a1+..ksas+m1b1+..+msbs=0,分别左乘m1b1^T,m2b2^T,.,msbs^T,再相加得(m1b1+...+msbs)^T*(m1b1+...+msbs)=0,故m1b1

设a1,a2,b1,b2是有理数,x1,x2是无理数,若a1+b1x1=a2+b2x2,则a1=a2,b1=b2,x1=

∵x、y是有理数,∴x²+2y、17为有理数;√2为无理数;又x^2+2y+√2y=17-4√2;则由实数的性质知:x^2+2y=17;y=-4;解之:x=±5;y=-4;故x+y=1或-9

设a1不等于a2(a1+b1)(a1+b2)=(a2+b1)+(a2+b2)=1证明(a1+b1)(a2+b1)=(a1

设a1不等于a2,已知(a1+b1)(a1+b2)=(a2+b1)(a2+b2)=1证明(a1+b1)(a2+b1)=(a1+b2)(a2+b2)=-1吗?标点和运算符号很不清楚!补充一下问题吧!

设a1,a2,b1,b2都是实数,a1不等于a2,满足(a1+b1)(a1+b2)=(a2+b1)(a2+b2)=1,求

由题目知道a1,a2是二次方程(x+b1)(x+b2)-1=0的两个不等实根于是由韦达定理知道a1a2=b1b2-1,a1+a2=-(b1+b2)从而(a1+b1)(a2+b1)=a1a2+b1(a1

设向量a=(a1,a2),向量b=(b1,b2),定义一种向量积:向量a*向量b=(a1,a2)*(b1,b2)=(a1

向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,

设向量组a1,a2,…am线性无关,向量B1可用它们线性表示,向量B2不能用它们线性表示,证明向量组a1,a2,…am,

因为b1可由a1,a2,…am线性表示所以λb1可由a1,a2,…am线性表示因为b2不能由a1,a2,…am线性表示所以λb1+b2不能由a1,a2,…am线性表示又因为a1,a2,…am线性无关所

证明向量组线性相关设向量组.,a1,a2,a3 ,线性相关,并设b1=a1+a2,b2=a1-2a2,b3=a1+a2+

方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B

设3×2矩阵A=(a1,a2),B=(b1,b2),其中a1,a2,b1,b2是3维列向量,若a1,a2

(C)正确.b1,b2线性无关r(B)=2r(A)=r(B)A,B等价(D)充分但不必要

设b1=a1+2a2 ,b2=a2+2a3 ,b3=a3+2a1 ,b4=a1+a2+a3 ,证明向量组b1,b2,b3

线性相关即b1,b2,b3,b4中至少有一个向量可以由其他向量线性表示.以b4为例,即b4=A*b1+B*b2+C*b3,A,B,C可取任意实数.而本题,据观察,b1+b2+b3=3*(a1+a2+a

设b1=a1,b2=a1+a1,.bm=a1+a2+...+am证明向量组a1,a2,...am与b1,b2...bm等

可以算出:a1=b1,a2=b2-b1,a3=b3-b2,...,am=bm-b(m-1),所以向量组a1,a2,...am与b1,b2...bm等价