设A.B为4阶方阵,且秩r(A)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:50:23
R(A*)=1因为R(A)=3,所以A*不为0矩阵,所以R(A*)>=1AA*=|A|E=0所以R(A)+R(A*)
证:1)设B=(b1,b2,b3,b4)因r(B)=2,则必有两个线性无关的列向量,取为b1,b2AB+2B=O,AB=-2B,A(b1,b2,b3,b4)=-2(b1,b2,b3,b4)b1,b2是
设I为单位矩阵情形一:A=0时,R(A)=0,所以R(A)+R(B)=R(B)=R(IB)
若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0
C=AB,r(C)=r(AB)
求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)
因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)
选D这个只要自己写一下就行了,既然r(A)=1,那原方阵A就相抵于3阶方阵{100;000;000},除了(1,1)位置元素为1,其余元素全是0——这是可以把A通过初等变换得到的.然后A中每一个元素a
证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=
R(A)
选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的
|a1+a2,2b,2r|=|a1,2b,2r|+|a2,2b,2r|=4*2-4=4
设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0
首先明确一点A是可逆的,如果A不可逆,AA-AB=A(A-B)的秩小于A,那么AA-AB≠E.AA-AB=A(A-B)=E;AAA-ABA=A,所以AA-BA=E.AB-BA+2A=(AB-AA)+(
A为可逆阵,则它为满秩.因为A为3阶.所以R(A)=3;
AA*=|A|Er(A)=n-1,说明|A|=0因此AA*=0于A*的列向量为齐次方程AX=0的解向量从而r(A*)=1总之r(A*)=1
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)
因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB