设A,求可逆矩阵C,使得CTAC为对角阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:01:58
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
直接将X的逆矩阵(分块形式)设出来,解方程即可
行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|
设[AB[A^{-1}X[EOCD]乘以YD^{-1}]等于OE]直接计算左边并与右边比较可得X=-A^{-1}BD^{-1},Y=-D^{-1}CA^{-1}由此可知原分块矩阵可逆,其逆矩阵为[A^
做奇异值分解A=UΣV^T,然后取P=UV^T,S=VΣV^T即可
提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]
(1)A不可逆,故其秩小于n,故可经过有限次行初等变换P1,P2,.Pk变为第一行元素全为0的矩阵DD=(Pk).(P2)(P1)A=QA,设:Q=(Pk).(P2)(P1)取F为这样的矩阵:其第一行
这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
我认为这么做由A+2B=ABA=2B-ABA=(2E-A)BA=221110-1232E-A=0-2-1-1101-2-1则2E-A的逆为-101-1111-2-2B=(2E-A)的逆*A=-302-
首先必须求最小多项式.一般只要矩阵不特殊都是sI-A初等行列变换变成史密斯标准型,从而通过行列式因子或者直接算出来不变因子组,写成(x-si)^ni形式后,求初等因子组,初等因子组里相同因子方幂最大的
|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆
设此矩阵A的特征值为λ则|A-λE|=4-λ0003-λ1013-λ按第1行展开=(4-λ)*(λ^2-6λ+8)=0解得λ=2,4,4当λ=2时,A-2E=200011011第1行除以2,第3行减去
两个相乘括号打开 整理得E 证明可逆
证明:对任一n维非零向量X因为A可逆,所以AX≠0.所以X^T(A^TA)X=(AX)^T(AX)>0[内积的非负性][这里用到A是实矩阵的条件]所以A^TA是正定的.
因为|ABC|=|A||B||C|所以|ABC|≠0的充分必要条件是|A|,|B|,|C|都不等于0故ABC可逆的充分必要条件是A,B,C都可逆.
因为反对称矩阵的特征值是0或者纯虚数.如果A+cE不可逆,则-c为反对称矩阵的特征值,出现矛盾,所以矩阵A+cE恒可逆补充证明:由反对称阵定义得A=-A'设ξ是属于特征值λ的特征向量,即Aξ=λξ那么
题目要求是求合同变换,可以用配方法或初等变换用特征值特征向量也可以,但要正交化单位化.这太麻烦了!再问:A的主对角元素都是零。。用配方法怎么做,能给详细点步骤吗再答:先凑成非零的手机回复,不好写