设A,求可逆矩阵C,使得CTAC为对角阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:01:58
设A,求可逆矩阵C,使得CTAC为对角阵
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

设分块矩阵D=(C A B 0),其中A为n阶可逆矩阵,B为m阶可逆矩阵.求|D|以及D的逆

行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|

设A ,D是可逆矩阵,B ,C是幂零矩阵,证明分块矩阵 A B 可逆.C D

设[AB[A^{-1}X[EOCD]乘以YD^{-1}]等于OE]直接计算左边并与右边比较可得X=-A^{-1}BD^{-1},Y=-D^{-1}CA^{-1}由此可知原分块矩阵可逆,其逆矩阵为[A^

设A是一个 阶可逆实矩阵.证明,存在一个正定对称矩阵S和一个正交矩阵U,使得

提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]

设A是n阶不可逆矩阵 证明 存在n阶非零矩阵B C 使得AB=CA=0

(1)A不可逆,故其秩小于n,故可经过有限次行初等变换P1,P2,.Pk变为第一行元素全为0的矩阵DD=(Pk).(P2)(P1)A=QA,设:Q=(Pk).(P2)(P1)取F为这样的矩阵:其第一行

设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵

这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设矩阵A=221,110,-123,求矩阵B,使得A+2B=AB

我认为这么做由A+2B=ABA=2B-ABA=(2E-A)BA=221110-1232E-A=0-2-1-1101-2-1则2E-A的逆为-101-1111-2-2B=(2E-A)的逆*A=-302-

设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?

首先必须求最小多项式.一般只要矩阵不特殊都是sI-A初等行列变换变成史密斯标准型,从而通过行列式因子或者直接算出来不变因子组,写成(x-si)^ni形式后,求初等因子组,初等因子组里相同因子方幂最大的

矩阵A 求可逆矩阵P 使得P^-1AP是对角矩阵 并写出这一对角矩阵

|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X

设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵

这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

矩阵A=400 031 013 求一个可逆矩阵P,使得P^-1AP=∧为对角阵

设此矩阵A的特征值为λ则|A-λE|=4-λ0003-λ1013-λ按第1行展开=(4-λ)*(λ^2-6λ+8)=0解得λ=2,4,4当λ=2时,A-2E=200011011第1行除以2,第3行减去

设A为可逆矩阵,试征;ATA为正定矩阵

证明:对任一n维非零向量X因为A可逆,所以AX≠0.所以X^T(A^TA)X=(AX)^T(AX)>0[内积的非负性][这里用到A是实矩阵的条件]所以A^TA是正定的.

设a,b,c都是n阶矩阵,证明abc可逆的充分必要条件是a,b,c都可逆

因为|ABC|=|A||B||C|所以|ABC|≠0的充分必要条件是|A|,|B|,|C|都不等于0故ABC可逆的充分必要条件是A,B,C都可逆.

设A是n维反对称矩阵,证明对任意非零常数c,矩阵A+cE恒可逆

因为反对称矩阵的特征值是0或者纯虚数.如果A+cE不可逆,则-c为反对称矩阵的特征值,出现矛盾,所以矩阵A+cE恒可逆补充证明:由反对称阵定义得A=-A'设ξ是属于特征值λ的特征向量,即Aξ=λξ那么

设矩阵A=第一行0 1 -2 第二行1 0 -1第三行-2 -1 0,求可逆矩阵C,使得CtAC为对角阵

题目要求是求合同变换,可以用配方法或初等变换用特征值特征向量也可以,但要正交化单位化.这太麻烦了!再问:A的主对角元素都是零。。用配方法怎么做,能给详细点步骤吗再答:先凑成非零的手机回复,不好写