设A,C分别为m阶,n阶可逆矩阵,求分块矩阵E=(B C ;A O)的逆矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:54:30
设A,C分别为m阶,n阶可逆矩阵,求分块矩阵E=(B C ;A O)的逆矩阵
矩阵题目:设A为m*n矩阵,而B C分别是m阶和n阶可逆矩阵,0为n*m零矩阵 证明A,B,C

题目只让你证明,你把两个矩阵乘起来验证一下就行了.验证它们的乘积等于单位阵.如图(点击可放大):

设A.B分别为m.n阶可逆矩阵,证明分块矩阵[O A/B O]可逆,并求逆

由A,B可逆令H=0B^-1A^-10由H[OA;BO]=E所以[OA/BO]可逆,且[OA/BO]^-1=H.

设分块矩阵D=(C A B 0),其中A为n阶可逆矩阵,B为m阶可逆矩阵.求|D|以及D的逆

行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|

高数线性代数设A为n阶可逆矩阵,B为任一n*m矩阵,如何证明

初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B

设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)

任何一个可逆阵,可以写成若干个初等阵的积左(右)乘一个初等阵,相当于做一次初等行(列)变换所以一个可逆阵乘一个阵,相当于对矩阵做初等变换而初等变换不改变矩阵的秩所以命题成立

设A和B分别是n×m型和m×n型矩阵,C=AB为可逆阵,证明:B的列向量线性无关

方程组Bx=0的解都是Cx=0的解,但是C可逆,所以Cx=0只有零解,所以Bx=0也只有零解,所以B的列向量线性无关

设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆

A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法

设A、B均为n阶可逆矩阵,则A+B也可逆?

不一定,E+(-E)=O.再问:哈,谢谢!

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A,B,c均为n阶方阵,B可逆,则矩阵方程A+BX=C的解

BX=C-AB^(-1)BX=B^(-1)*(C-A)X=B^(-1)*(C-A)

设A为n阶可逆矩阵,则

C不对,因为此时只能用初等行变换才有相应结果

设A为n阶可逆矩阵,U,V为为n*m矩阵,Em为m阶单位矩阵,若秩(V'A-1U+Em)

考虑分块矩阵B=[A,-U;V',Em],P=[En,U;0,Em],Q=[En,A^(-1)U;0,Em].可知P,Q可逆,故r(PB)=r(B)=r(BQ).而PB=[A+UV',0;V',Em]

设A,B为n阶矩阵,如果E+AB可逆,证明E+BA可逆.

因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能

设A为m×n矩阵,C是n阶可逆矩阵,A的秩为r1,B=AC的秩为r,则( ) A.r>r1 B.r=r1 C.r

注意到AC的行列数与A相同,故A右乘C实际上就是对A进行初等列变换,故r=r1

设a,b,c都是n阶矩阵,证明abc可逆的充分必要条件是a,b,c都可逆

因为|ABC|=|A||B||C|所以|ABC|≠0的充分必要条件是|A|,|B|,|C|都不等于0故ABC可逆的充分必要条件是A,B,C都可逆.

【分块矩阵】 设A,C分别为m,n阶方阵,B为mxn矩阵,M={A B/O C},求证:|M|=|A||C|.

如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一