设A*是n阶方阵A的伴随矩阵,行列式|A|=2,求|3A*|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:14:37
A*A=AA*=|A|E这个结论不依赖于A是否非奇异至于证明,直接把A*A和AA*的每个元素都按乘法的定义写出来看一下就知道了.再问:Ŷ��лл�������Ҷ����ϵ��Ǿ仰����е����⡣�
A*是n阶方阵A的伴随矩阵,若R(A*)=n,则R(A)=n因为A^(-1)=A*/|A|两边同时乘以A得E=AA*/|A|所以A可逆R(A)=n记住结论:A*是n阶方阵A的伴随矩阵,①若R(A)=n
||A|A*|=|A|^n|A*|=|A|^n|A|^(n-1)=|A|^(2n-1)用到了几个结论:1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
|A|=a≠0那么A可逆,A(-1)表示A的逆矩阵A(-1)=A*/|A|A*=|A|A(-1)AA*=|A|E(E为单位矩阵)|A||A*|=||A|E|=|A|^n|A*|=|A|^(n-1)=a
det(A)=o说明R(A)
假设A*不等于0,则根据A*定义,A的某个n-1子式行列式不等于0,也就是那个n-1阶子式的行向量线性无关,所以A必然有n-1行线性无关,和A的秩小于n-1矛盾,所以A*肯定是0矩阵,其特征值必然是0
首先,当AB=0时r(A)+r(B)=1,故r(A*)=1.再问:若r(A*)=1,那不是r(A)
貌似选c这有例子,自己看看.加油,线性代数还是挺麻烦的,多看看书.
由已知,A*=A^T所以AA^T=AA*=|A|E由于A≠0,所以存在aij≠0.考虑AA^T中第i行第i列的元素知ai1^2+ai2^2+...+aij^2+...+ain^2=|A|再由aij是实
(1)证:如果r(A)
行列式中不是有个公式:(A)(A*)=det(A)E那么两边取行列式的det(A)det(A*)=[det(A)]^n所以,detA*=[detA]^(n-1)=a^(n-1)不是是否明白了再问:明白
(1)要证这条,需要知道等式AA*=|A|E,其中|A|是A的行列式.如果R(A)=n,说明|A|不为零,则A*可逆,其逆为(1/|A|)A,所以R(A*)=n.(2)要证这条,需要知道A*的元素是A
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
n-1因为R(A)必定小于n而A*是各n-1阶子式组成的矩阵其不为0说明A比能取到至少1个不为0的n-1阶子式故R(A)=n-1
A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
你的结论就是错的如果r(A*)=n那么r(A)=n这才是对的我就证明一个比较难想的即若r(A)=n-1那么r(A*)=1由于r(A)=n-1所以A中有一行为0|A|=0有n-1阶非零子式子所以r(A*
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.
充要条件A的行列式为0《=====》A的伴随矩阵的行列式为0可以参考伴随矩阵的秩的性质