设a 为n 阶矩阵, a是n 维列向量,若秩 =秩,则线性方程组(
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:49:06
用正交阵定义验证.经济数学团队帮你解答.请及时评价.
设A=(a1,a2,.an)^T,B=(b1,b2,.bn)^T则AB^T=a1b1a1b2a1b3.a1bna2b1a2b2a2b3.a2bn..anb1anb2anb3.anbn注意任何一个2*2
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。
已知n维列向量α是A的属于特征值λ的特征向量,则:Aα=λα,(P-1AP)T=PTA(PT)-1,等式两边同时乘以PTα,即:(P-1AP)T(PTα)=PTA[(PT)-1PT]α=PTAα=λ(
H^TH=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]
你这个问题有一个证明方法就是证明A至少存在一个非零的特征值.假设A不存在一个非零的特征值,所有的特征值都是0,则A=0,矛盾,因此A至少存在一个非零的特征值,假设其对应的特征向量为X,那么XTAX就不
在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基
证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)
AB^T的特征值为B^TA,0,0,...,0且由CA=AB^TA=(B^TA)A知A是C的属于特征值B^TA的特征向量.因为Q是正交矩阵所以B^Tqi=0所以Cqi=AB^Tqi=0所以q1,...
用判别法则rank(A^TA,A^Tb)>=rank(A^TA)同时rank(A^TA,A^Tb)=rankA^T(A,b)
因为A是n阶正交矩阵,所以A'A=E||Aα||=√(Aα,Aα)=√(Aα)'(Aα)=√α'A'Aα=√α'Eα=√α'α=||α||
因为对任何n维列向量b,方程组Ax=b都有解.此时n维列向量b分两种情况:1)b=0,则AX=0.这是齐次线性方程组,R(A)=n,系数行列式IAI不等于0,即必有零解.2)b不=0,则AX=b.这是
设k1Aα1+k2Aα2+…+knAαn=0则A(k1α1+k2α2+…+knαn)=0因为A可逆,等式两边左乘A^-1,得k1α1+k2α2+…+knαn=0由已知α1,α2,…αn线性无关所以k1
证明:Ax=b有唯一解,那么r(A,b)=r(A)=n,而A为n阶矩阵,所以r(A)=n可以得到A可逆同理,n阶矩阵A可逆,那么r(A)=n,而增广矩阵r(A,b)显然此时等于r(A),所以r(A,b
a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
1.A是实矩阵时正确x满足A^TAx=0,则x^TA^TAx=0,即有(Ax)^T(Ax)=0,故有Ax=02.不对.不管A是否可逆,Ax=0时,(等式两边左乘A^T)都有A^TAx=0.