设3是一个可逆矩阵A的一个特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:20:16
AX=λXA^(-1)AX=λA^(-1)XX=λA^(-1)X(1/λ)X=A^(-1)X1/λ是A^(-1)的特征值
跟你说下过程吧,左边放原矩阵,右边放一个单位矩阵,对这个大矩阵一起做初等行变换(注意只做行变换),把左边的那个矩阵变成一个单位阵,这样右边这个就是原矩阵的可逆矩阵了.可以理解吗?
提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]
因为R是可逆矩阵A的一个特征值所以Ax=Rx两边左乘A*A*Ax=A*Rx即det(A)x=A*Rx那么A*x=det(A)/Rx所以det(A)/R是A的伴随矩阵A*的一个特征值
设x是A的属于特征值m的特征向量则Ax=mx.两边左乘A*得A*Ax=mA*x.由A*A=|A|E得|A|x=mA*x.再由A可逆,A的特征值都不等于0,所以有(|A|/m)x=A*x即|A|/m是A
证:设α是A的属于特征值λ的特征向量,则Aα=λα两边左乘A*得A*Aα=λA*α所以有|A|α=λA*α,即dα=λA*α因为A可逆,所以A的特征值都不等于0所以有(d/λ)α=A*α即d/λ是A*
设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.
有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值
2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中
证明:(P^-1AP)^2=(P^-1AP)(P^-1AP)=P^-1A(PP^-1)AP=P^-1A^2P再问:请问没有具体的解题步骤吗?再答:步骤已经给了呀
E+(A^-1)+A^3有一个特征值是1+1/2+2^3=19/2
∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.
A*=|A|乘上A的逆阵,它的秩为|A|乘上(矩阵A的秩的倒数),由A+3E不可逆可知|A+3E|=0即A的一个特征值为-3,因此矩阵A*的特征值为-5/3.
因为AT×(1,1,1)T=4(1,1,1)T,所以,A的转置AT有一个特征值4所以,|AT-4I|=0转置一下,得|A-4I|=0所以,A有一个特征值4
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值
证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)
AB都是错的.A中,要排除零解.B中,应为正的1/aC中A*=|A|*A的逆故该特征值为此D中依特征值的性质若a是A的特征值则g(a)是g(A)的特征值可以得出
就是证明AA^T是正定阵即可.因为对任意的n维列向量x,有x^T(AA^T)x=(A^Tx)^T(A^Tx)>=0,且等号成立的充要条件是A^Tx=0,而A可逆,即A^T可逆,因此等号成立的充要条件是
如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数