设3元非齐次方程组Ax为b的两个解为102
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:51:30
我算出来3对~~第一组,(0,0)当x1^3+x2^3=x1+x2时,有(x1+x2)(x1^2-x1x2+x2^2)=x1+x2是三次因式分解公式,所以,当x1+x2=0时,两式成立,此时又有,x1
D是否有解无法判断A秩=4AB﹙即增广矩阵﹚秩可以是4﹙唯一一组解﹚或者5﹙无解﹚.再问:这个题答案选C再答:哦,是我没有看清楚题目,以为是另外一道题,http://zhidao.baidu.com/
选BA[1/5(3β1+2β2)]=3/5Aβ1+2/5Aβ2=3/5b+2/5b=b故1/5(3β1+2β2)为该方程组的解
因为R(A)=n-1所以AX=0的基础解系含n-r(A)=1个解向量所以AX=0的通解为k(a1-a2).
R(A)=2,n=3,故自由未知量的个数为n-R(A)=3-2=1又因为向量n1=(101)T,n2=(213)T是方程组Ax=B的两个解则α=n2-n1=(112)T是Ax=0的解(An1=B,An
(C)正确其余3个选项都是说A可逆当A可逆时,对任一b,AX=b都有唯一解,与题意不符
假设:方程ax^2+2bx+c=0,bx^2+2cx+a=0,cx^2+2ax+b=0中同时有等数根即:(2b)²-4ac=0……①(2c)²-4ab=0……②(2a)²
证明:设k1a+k2(a+b1)+.+k_(n-r+1)(a+bn-r)=0(1)两边左乘以矩阵A,(k1+k2+……+k_n-r+1)B+k2Ab1+k_n-r+1Abn-r=0由于Abi=0(i=
选A就是求出齐次方程组的基础解系和一个特解即可.注意到定理:若a1,a2是Ax=b的两个不同的解,即Aa1=b,Aa2=b,则A(a1-a2)=Aa1-Aa2=b-b=0,因此a1-a2是齐次方程组的
由于方程组是非齐次的它的解等于它本身的一个解加上它的齐次方程组的解它的齐次方程组的解直接用n2-n3就得到了也就是(1,6,-1)T
c零向量肯定是一个解.如果AX=O有非0解S的话,设AX=B的解为C,那么A(C+S)=AC+AS=B+0=B,所以C+S也是一个解,而且与C不同,这样的话AX=B的解就不是唯一的了.所以AX=0只有
就是求出齐次方程组的基础解系和一个特解即可.注意到定理:若a1,a2是Ax=b的两个不同的解,即Aa1=b,Aa2=b,则A(a1-a2)=Aa1-Aa2=b-b=0,因此a1-a2是齐次方程组的解,
为什么要u2-u1不是u1-u2--都可以.基础解系本来就不是唯一的然后为什么u2-u1是AX=0的非零解--是解是由性质,非零是计算结果知道r小于n就是有非零解那是不是意思就是u1,u2是AX=0的
选D,r不可能>n的,CD排除,r=n是齐次方程只有零解,其实这个书上有结论的.再问:哦,谢谢了,再答:客气!
用分块及秩的讨论证明.经济数学团队帮你解答.请及时评价.
k_1+k_2=1再问:求解释..为什么是1不是2再答:A(k1g1+k2g2)=k_1Ag_1+k_2Ag_2=k_1b+k_2b=(k_1+k_2)b所以b=(k_1+k_2)b所以k_1+k_2
题目没说清楚.若A不是零矩阵,则r(A)=1.至于a3-a2虽然也是Ax=0的解,但它与a2-a1,a3-a1线性相关(等于后者减前者)
线性无关和线性相关在齐次或非齐次线性方程组中怎么表示啊,没有所谓的在线性方程组中表示线性相关或者无关的说法,线性相关和无关是向量组的特性,和线性方程没有直接联系a1-a2,a2-a3是Ax=0线性无关