设0≤x≤2派,已知两个向量OP=(cos
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:05:47
CP1P2|^2=(2+sinθ-cosθ)^2+(2-cosθ-sinθ)^2=4+4(sinθ-cosθ)+(sinθ-cosθ)^2+4-4(sinθ+cosθ)+(sinθ+cosθ)^2=8
由|ab|=|a||b|得|(1,sin²x)(2,sin2x)|=|(1,sin²x)||(2,sin2x)||2+sin²xsin2x|=√[1+(sinx)^4]*
(1)m垂直于n,则有m·n=2(cosx)^2*1+sinx*2cosx=0cosx*(cosx+sinx)=0cosx=0或cosx+sinx=0,即tanx=-1又0
设A(3cost,3sint),B(3coss,3sins).∵AC⊥BC∴(3cost-1)(3coss-1)+9sintsins=09(costcoss+sintsins)-3(cost+coss
这么简单都不会...(A+B)^2=A^2+B^2+AB=2+cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)=2+cos(3x/2-x/2)=2+cosx|A+B|=根号(A+
(1)ab=cos(2x)|a+b|=|(cos3x/2+cosx/2,sin3x/2-sinx/2)|=√(2+2cos3x/2*cosx/2-2sin3x/2*sinx/2)=√(2+2cos2x
已知O为坐标原点,点M(1,-2),点N(x,y)满足条件(x≥1,x-2y≤1,x-4y+3≥0),则向量OM•ON的最大值OM=(1,-2);设ON=(x,y),则OM•O
设点A(x1,y1)B(x2,y2)该直线方程为y=kx+1/2带入曲线y=1/2x^2,得到一个关于x的一元二次方程,根据韦达定理,算出x1+x2和x1*x2,再用直线算出y1*y2,则向量OA*向
P1P2^2=(2+sinθ-cosθ)^2+(2-sinθ-cosθ)^2=4+(sinθ)^2+(cosθ)^2+4sinθ-4cosθ-2sinθcosθ+4+(sinθ)^2+(cosθ)^2
P1P2=OP2-OP1=(2+sinθ-cosθ,2-cosθ-sinθ)|P1P2|^2=(2+sinθ-cosθ)^2+(2-cosθ-sinθ)^2=2(2-cosθ)^2+2(sinθ)^2
CP1P2|^2=(2+sinθ-cosθ)^2+(2-cosθ-sinθ)^2=4+4(sinθ-cosθ)+(sinθ-cosθ)^2+4-4(sinθ+cosθ)+(sinθ+cosθ)^2=8
|P1P2|^2=(2+sinθ-cosθ)^2+(2-cosθ-sinθ)^2=4+4(sinθ-cosθ)+(sinθ-cosθ)^2+4-4(sinθ+cosθ)+(sinθ+cosθ)^2=8
f(x)=2sin^2(x+π/4)-√3cos2x+√3-√3=1-cos(2x+π/2)-√3cos2x=sin2x-√3cos2x+1=2sin(2x-π/3)+11.fmax=2+1=3fmi
(1)a平行b:sinx/cosx=-3/2=tanxtan2x=12/5tan(2x-π/4)=(tan2x-1)/(1+tan2x)=7/17(2)f(x)=(a+b)b=(sinx+cosx,1
1.设向量n=(x,y)则:y/x=0,x+y=-1或者y/x=-∞,x+y=-1所以n=(-1,0)或(0,-1)2.因为向量n与向量q=(1,0)的夹角为pai/2所以n=(0,-1)p=(cos
这道题目有更加一般性的推广:请看:http://www.tesoon.com/up/200805/2008518115518218488339.gif
5设i,j是平面直角坐标系内x轴y轴正方向的两个单位向量,且向量AB=4i2j,AB.AC=|AB||AC|cos∠CAB(4i2j).(3i4j)=5√20cos∠
解题思路:考查向量共线的性质及运算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/
再答:再答:α=派/12
OA+OB=(2+cosx,sinx)OA*OB=2cosxf(x)=OA^2+2OA*OB+OB^2=4+4cosx+(cosx)^2+(sinx)^2=5+4cosx由于-1