设(xy)的联合密度概率为pXy=2e的-(x 2y)次

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:20:45
设(xy)的联合密度概率为pXy=2e的-(x 2y)次
设随机变量(ξ,η)的联合概率密度为f(x,y)=4xy,0

直观的根据面积来算,x=y,x=2y,x=3y,都是直线,是无具体面积的而XY是在一个具体的区域内,故为0可以算一下XY的概率,来比记忆加以理解

设二维随机变量(X,Y)的联合概率密度为f(x,y)=e的-y次方 0

1.f(X,Y)关于X的边缘概率密度fX(x)=f(x,y)对y积分,下限x,上限无穷,结果fX(x)=e^(-x)2.f(X,Y)关于Y的边缘概率密度fY(y)=f(x,y)对x积分,下限0,上限y

设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=(1+xy)/4,│x│

(1)f(x)=∫f(x,y)dy=1/2f(y)=∫f(x,y)dx=1/2x,y是均匀分布(2)E(X)=0,E(y)=0D(X)=∫f(x)x²dx=1/3,D(Y)=∫f(y)y&#

概率统计问题,二维连续型随机变量问题,设二维随机变量(X,Y)的联合概率密度为

再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于

设三维随机变量(X1,X2,X3)的联合概率密度函数为:

我也想给你做,不过你给的范围不清楚,没法做下去,很简单的计算,具体思路如下:再问:这是老师给的原题第一题再答:题目有点问题,应该换成证明X,Y,Z两两独立,但不相互独立。

设随机变量(X,Y)的联合概率密度为f(x,y)={kx,0

(1)∫∫(-∞,+∞)f(x,y)dxdy=k/3=1k=3(2)fX(x)=∫(-∞,+∞)f(x,y)dy=3x²,0

概率数学题设二维随机变量(XY)的联合密度函数

∫[0,1]{∫[x^2,x]kdy}dx=k∫[0,1]{(1/2)x^2|[上限x,下限x^2]}dx=∫[0,1](x-x^2)dx=k(1/2–1/3)=k/6=1--》k=6f(x)=∫[x

二维随机变量(X,Y)的联合概率密度为

对f(x,y)求积分上下限都是0-1,这个积极结果=1求出c*1/2*1/3=1/6c=1c=6.(2)前面的积分结果中把上下限换成0-0.5,此时c=6,求值.(3)当0

若X与Y的联合概率密度为f(x,y)=24xy,0

fx(x)=∫(0~1/Γ3)24xydy=12xy²](0~1/Γ3)=4xP(x

数理统计:设(X,Y)的联合概率密度为:f(x,y)=A,0

利用所有事件概率和一定等于1的原理来求.具体方法就是∫(-∞,+∞)∫(-∞,+∞)f(x,y)dydx=∫(0,1)dx∫(x,1)Ady=∫(0,1)(A-Ax)dx=1/2A=1所以A=2

设二维随机变量(X,Y)的联合概率密度为f(X,Y)=8XY,0

若X与Y相互独立,则f(x,y)=fx(x)*fy(y)即联合概率密度等于x和y边缘密度的乘积显然在这里0≤X≤Y≤1,fx(x)=∫(0到1)f(x,y)dy=∫(0到1)8xydy=4x²

概率与统计:设二维随机变量(X,Y)的联合密度函数为,如图

(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0

设二维随机变量(X,Y)的联合密度函数为.求概率等.

1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y

概率统计,8、设二维随机变量(X,Y)的联合概率密度为

再问:最后一题,X、Y是否相关?请问该怎么做?答案是线性相关。