设(X,Y)具有概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:21:03
由归一性有:∫(从0积到1)∫(从0积到+∞)B*e^[-(x+y)]dydx=B*∫(从0积到1)e^(-x)dx*∫(从0积到+∞)e^(-y)dy=B*[1-e^(-1)]*1=B*[1-e^(
(1)对kx+1积分,得0.5kx^2+x,把上下限0,2代入,得2k+2=1,得k=-0.5(2)把k的值代入得密度函数f(x)=-0.5x+1积分-0.25x^2+x,把上下限3/2,2代入,t得
f(y)=(1/2)*f[(y-3)/(-2)]
再问:E(Y)的答案是5/3,我之前算了好几遍都是得9/7,可答案却不是,所以我才提问的,难道是我书的答案错了?
设F(x)为X的边缘概率密度,G(y)为Y的边缘概率密度由边缘概率密度计算公式:F(x)=∫f(x,y)dy积分上下限为正负无穷由联合函数的定义域知:F(x)=∫8xydy积分上下限为0,xF(x)=
具体的记不清楚了,没有公式编辑器也打不上,给你说一下思路.我们知道概率的期望,是用x*p,然后求和,这个是对于离散的来说如果对于连续的,应该用那一点的x乘以该点的概率值,即用x*f(x),再求和,我们
注:这是2007年考研数学一第23题,楼主随便在网上搜一下“2007年数学一答案”,就可以找到答案
【解】分别记X,Y的分布函数为F(x)和F(y),随机变量X的概率密度为f(x).先求Y的分布函数F(y).由于Y=X^2>=0,故当y0时有F(y)=P{Y
f(x,y)在其对应区域的二重积分为1,即可求出c,积分号输不出来,见谅
Cov(x,y)=EXY-EXEY挨个求出来不就可以了吗?EXY=1/3EY=3/5Ex=2/5Cov(x,y)=7/75
大学概率知识两题一样的!还好我刚学完~相互独立,均匀分布,则概率密度都是1/(b-a),概率分布函数就是把概率密度从a积分到x,F(x)=(x-a)/(b-a)(1)Z1=max(X,Y)的分布函数=
这题难度较大,除了要知道概率密度的求法,在计算当中还要知道反三角函数的一些知识,还有含参变量积分的求导方法,也就是说除了概率知识,对于高等数学还要有一定的基础.解答如下图:
P(X>=0)=1意思是X>=0的概率为1AP(X>=0)=∫(0~1)∫(0~1)6x²ydxdy=1BP(X
f(x,y)=Ae^(-2x-3y),x>0,y>0∫∫f(x,y)dxdy=1,可得A=6f(x)=2e^(-2x),x>0f(y)=3e^(-3y),y>0f(x,y)=f(x)*f(y),所以X
你对f(x,y)进行二重积分X从0.5到1,Y从0到0.5我这不好计算