设(x)在x=0处连续,则lim
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:36:58
因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导
lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导
limf(x)/x存在,分母-->0,故limf(x)=0,f(x)在x=0连续,limf(x)=f(0)=0f'(0)=lim[f(x)-f(0)]/[x-0]存在,所以f(x)在x=0连续且可导
根据题意有:1、在x=0处连续,当x趋向0时f(x)/x的极限等于1则x趋向0时f(x)的极限等于xf(0)=02、当x趋向0时f(x)/x的极限等于1f’(0)=1f(0)+f’(0)=1再问:当x
很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,
因为当x趋于0时,有f(0)=limf(x)=limf(x)/x*x=limf(x)/x*limx=0,于是f(0)=0,于是lim[f(x)-f(0)]/(x-0)=limf(x)/x=f'(0)存
参见高等数学上册,极限存在,而且是0/0型,所以必有x趋向于0时limf(x)=0
存在,因为x趋向于0时limf(x)/x存在且x=o处连续所以f(0)=0f'(0)=lim(x->0)f(0+x)-f(0)/x=lim(x->0)f(x)/x所以存在
1、设g(a)=0,lim[x→a][F(x)-F(a)]/(x-a)=lim[x→a][f(x)g(x)-f(a)g(a)]/(x-a)=lim[x→a]f(x)g(x)/(x-a)=lim[x→a
1=lim(x→0)F(x)所以lim(x→0)f(x)=01=lim(x→0)F(x)=lim(x→0)f(x)/x+lim(x→0)3ln(1+x)/x=lim(x→0)(f(x)-f(0))/(
由于f(x)在x=0处连续,即lim{x->0}f(x)=f(0)所以f(0)=lim{x->0}f(x)=lim{x->0}[f(x)/x]*x=lim{x->0}[f(x)/x]*lim{x->0
1.第一题,运用洛必达法则,lim[f(a)-f(a+2h)]/3h=lim[f'(a)-f'(a+2h)*2]/3=-f'(a)/32.同样是洛必达法则,lim[f(x)sinx/3x]=lim[f
lim(x-->0)f(x)=lim(x-->0)π*(sinπx)/(πx)=πlim(x-->0)(sinπx)/(πx)=π∵f(x)在x=0处连续∴lim(x-->0)f(x)=f(0)=π∴
x=0连续,所以e^0=1=0^3+a即a=1
D太简单了你只要把g(x)想成g(x)=2x就好了想法的由来:在(x→0)sinxへx
就是求函数在X=2处的极限,该极限值就是a的值答案是B这个函数是一个分段函数的写法,在X不等于2的区域,函数值由第一个式子确定,但第一个式子存在X=2这个断点,所以第二个式子确定函数在X=2处函数值为
等于1因为当X越来越靠近零时,1/x^2是趋近于无穷大的,因此2开无穷大次方就是无限靠近1的,因此函数值为了保证连续就应当等于1楼上的开玩笑任何数开方都不可能等于0啊,小于1的数平方是越来越小的,因此
x→0时,1/2√x→∞.要把sin√x与1/√x合在一起讨论,这是个等价无穷小再问:为什么趋于无穷啊?不好意思我高数刚学很多不明白,能解释详细点吗谢谢再答:分子是1,分母趋向于0,分式不就是趋向于∞
(1)F'(x)=1/x^2∵0时∴F'(x)(0,+∞)不变建立一个∴F(x)在(0,+∞)上单调递增(2)函数f(x)在(0,+∞)连续所述→0+limf(x)=-∞所述→∞:limf(x)=+∞
F(-x)=∫[0,-x]f(t)dt=∫[0,x]f(-u)d(-u)(令t=-u)=∫[0,x]-f(u)(-du)=∫[0,x]f(u)du=F(x),所以F(x)是偶函数.选B.