设 X∼π(λ) ,求 E(1 X 1 )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:47:43
因为x1,x2,x3相互独立所以D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)X1~U[0,6]D(X1)=(6-0)^2/12=3X2服从λ=1/2的指数分布D(x2)=2^2=
这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1
首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/
参数为1,就是λ为1
∵⊿=2²-4×1×﹙-1﹚=8>0∴方程有两不等的实根∵x1<x2∴x1-x2=-√﹙x1-x2﹚²=-√[﹙x1+x2﹚²-4x1x2]=√[﹙-2﹚²-4
Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²
E(s^2)=[σ^2/[(n-1)]*E[(n-1)*S^2/σ^2]=[(n-1)*σ^2/(n-1)]=σ^2你这个题发出来确实很独特,我还要先把他解码一下,才能帮你解答.
可导则连续f(1)=1^2=1则x趋于1+,ax+b极限是1所以a+b=1可导则左右导数xian相等(x^2)'=2x所以左导数=2(ax+b)'=a则右导数=a=2所以a=2,b=1-a=-1
a=5,b=-7,c=-3所以x1+x2=7/5x1x2=-3/5所以x1²+x2²=(x1+x2)²-2x1x2=49/25+6/5=79/251/x1+1/x2=(x
f(x)=0.5e^xx≤00.5e^(-x)x>0可见f(x)是偶函数①E(2X)=2EX=2∫Rxf(x)dx=2∫【-∞,0】0.5*x*e^xdx+2∫【0,+∞】0.5*x*e^(-x)dx
1、E(X')=u,D(X')=σ2/n,E(S2)=DX,2、最大似然估计:a=-1-n/(lnx1+lnx2+...+lnn)矩估计:a=(1-2X')/(X'-1)X'代表X-好多符号显示不了,
对等式两边同时求导:dy/dx=-e^-x/(1+e^-x)dy=-1/(1+e^+x)
设方程2X²-3X+1=0的两个根为X1X2则X1+X2=-(-3)/2=3/2X1*X2=1/2X1²+X2²=(X1+X2)²-2*X1*X2=(3/2)&
1、f'(x)=[e^x*(x^2+k)-e^x*2x]/(x^2+k)^2=e^x*(x^2-2x+k)/(x^2+k)^2当k≥1时,x^2-2x+k=(x-1)^2+(k-1)≥0,故f(x)在
对于方程x^2-2x-1=0,它的两根为x1,x2,由根与系数关系(或韦达定理)可得:x1+x2=2,x1x2=-1.故有:x1^2+x2^2=(x1+x2)^2-2x1x2=2^2-2*(-1)=6
det=[-2(1-m)]^2-4*m^2>=0解得m=1Ymin=1
因为x1,x2是任意的,因此要求不等式左边的最大值要小于等于右边的最小值.然后利用导数,求f(x)的最大值,求出来为x=1时,最大为-3.g(X)的单调性为在(0,1/k)递增,在(1/k,+∞)递减
点击看大图
答案1由方程得x1+x2=2008,x1*x2=-1则(x2)^2+2008\x1=(x2*x2*x1+2008)/x1=(-x2+x1+x2)/x1=1