设 n阶矩阵 A一个特征值是 3,则矩阵 A2−3A E必有特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:21:44
设 n阶矩阵 A一个特征值是 3,则矩阵 A2−3A E必有特征值
设n阶矩阵A的任意一行的元素之和都是a 证明a是矩阵A的一个特征值 求a对应的特征向量

考虑列向量x=(1,1,...,1)它和该矩阵的乘积是(a,a,...,a)它满足Ax=ax,因此a是特征值,x是特征向量

设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为?

∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特

设n阶矩阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值.

证:设α是A的属于特征值λ的特征向量,则Aα=λα两边左乘A*得A*Aα=λA*α所以有|A|α=λA*α,即dα=λA*α因为A可逆,所以A的特征值都不等于0所以有(d/λ)α=A*α即d/λ是A*

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中

设n阶矩阵A满足 AT A=I,detA=-1,证明-1是A的一个特征值.

证明:因为A^TA=E,所以AA^T=E所以|A+E|=|A+AA^T|=|A||E+A^T|=-|E+A|所以|A+E|=0所以-1是A的的一个特征值.

设n阶矩阵A满足 AT A=I,detA=-1,证明-1是A的一个特征值

证明由A^TA=E得A+E=A+ATA=(E+A^T)A所以|A+E|=|E+A^T||A|=|(E+A)^T|A=|E+A||A|=|E+A|*(-1)2|A+E|=0|A+E|=0所以-1是特征值

设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是(  )

∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

1.设N是可逆矩阵A的一个特征值,则 A.N是任意数 B.N>0 C.N不等于0 D.N<0

1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就不可逆了.2.选B,初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵.那么你同样可以把4个选项分别作初等变化看能不能

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

若3是n*n阶矩阵A的特征值,行列式|A|=2,则A的伴随矩阵的一个特征值为几?为什么?

一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.

设λ是矩阵A为的特征值,则矩阵4A^3-2A^2+3A-2E的一个特征值为

这是定理4A^3-2A^2+3A-2E的一个特征值为4λ^3-2λ^2+3λ-2.

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

设A为3阶矩阵,2是A的一个2重特征值,-1为它的另一个特征值,则|A|=?求计算过程,

结果为2*2*(-1)=-4因为有这个结论,一个矩阵的行列式等于它的各个特征值之积,我刚考完线代,复习了很久呢.

设λ是n阶矩阵A的特征值 则 是A平方的特征值

则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.