设 n阶矩阵 A一个特征值是 3,则矩阵 A2−3A E必有特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:52:22
考虑列向量x=(1,1,...,1)它和该矩阵的乘积是(a,a,...,a)它满足Ax=ax,因此a是特征值,x是特征向量
∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特
显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值
证:设α是A的属于特征值λ的特征向量,则Aα=λα两边左乘A*得A*Aα=λA*α所以有|A|α=λA*α,即dα=λA*α因为A可逆,所以A的特征值都不等于0所以有(d/λ)α=A*α即d/λ是A*
有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值
2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中
证明:因为A^TA=E,所以AA^T=E所以|A+E|=|A+AA^T|=|A||E+A^T|=-|E+A|所以|A+E|=0所以-1是A的的一个特征值.
证明由A^TA=E得A+E=A+ATA=(E+A^T)A所以|A+E|=|E+A^T||A|=|(E+A)^T|A=|E+A||A|=|E+A|*(-1)2|A+E|=0|A+E|=0所以-1是特征值
∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就不可逆了.2.选B,初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵.那么你同样可以把4个选项分别作初等变化看能不能
只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ
一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.
这是定理4A^3-2A^2+3A-2E的一个特征值为4λ^3-2λ^2+3λ-2.
由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.
结果为2*2*(-1)=-4因为有这个结论,一个矩阵的行列式等于它的各个特征值之积,我刚考完线代,复习了很久呢.
行列式的值=特征值的乘积=-4
则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.