n阶矩阵的维数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:23:00
n阶矩阵的维数
请问n阶上三角矩阵的维数为什么是n*(n+1)/2呢?

第i列有i个自由度,所以维数就是1+2+...+n=n(n+1)/2正式一点讲,恰好有一个元素为1,其余元素为0的上三角矩阵构成空间的一组基,这样的矩阵有n(n+1)/2个

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

矩阵的n阶方 

再问:图图只到证明k+1时也成立,这就够了?再答:数学归纳法啊再问:谢谢:-P再答:n=1时候成立,假设n=k时候成立,如果证明得到n=k+1时候成立,那就说明n等于任意正整数成立再答:数学归纳法啊少

设A为数域P上的n阶矩阵,数a为A的n重特征值,证明A=aE为数量矩阵

由已知,存在可逆矩阵Q满足Q^-1AQ=diag(a,a,...,a)=aE所以A=Q(aE)Q^-1=aQQ^-1=aE.

若p^n中任意一个非零向量都是数域p上n阶矩阵a的特征向量,则a必为数量矩阵.如何证明?

首先,因为属于不同特征值的特征向量的和不是特征向量所以A的特征值为k,k,...,k(即k是A的n重特征值)再由n维基本向量组ε1,ε2,...,εn是特征向量所以(ε1,ε2,...,εn)^-1A

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

数域p上n级下三角矩阵关于矩阵加法和数乘构成的线性空间的维数是多少?

那就看此线性空间中的一组基到底含有多少个向量呗?这组基中有多少个向量,空间维数就是多少这组基要能线性表示出空间中任意一个向量(在这里,就是任意一个下三角阵)n阶下三角阵中到底有多少个位置可以取非零数呢

一个矩阵能称为n阶矩阵,是不是该矩阵行数和列数都是n?

对,n阶矩阵就是方阵,也就是行数和列数相等.

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

矩阵的维数是什么,

矩阵是2维的.因为矩阵同时有行和列,行是一维,列是一维,所以是2维的.

问刘老师,所有n阶反对称矩阵构成数域P上的线性空间的维数为______

由于反对称矩阵满足aij=-aji,主对角线上元素全是0所以主对角线以下元素由主对角线以上元素唯一确定所以维数为n-1+n-2+...+2+1=n(n-1)/2.

关于N阶矩阵的det.

不是,不可以!只有少数情况下可以用矩阵分块来做,分成准上三角或准下三角才可以按你想的那样去做,一般来说是不相等的,只有能分解成以上两种特殊情况才可以.也就是说A,B一般不等于|AD-CB|C,DA,O

n阶矩阵A的n次方等于单位矩阵,则A相似于对角矩阵

A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根

C语言,输入一个(1~20)的数n!得到n*n个数,以n*n矩阵顺时针输出!

方法很多,以下是按照各边的次序填充再输出:#include<stdio.h>intmain(){inti,j,a[100][100],n,k=1;printf("pleaseinputan

矩阵的维数怎么求?如以下矩阵怎么求矩阵的维数?

行列式=23885不为零矩阵是满秩矩阵维数是5

线性代数矩阵的秩与矩阵阶数的判断?

设矩阵A是m行、n列的那么A就是m行、n列的矩阵,假定:m>=n,那么矩阵A的秩:r(A)

m*n阶矩阵的行列式是什么

m=n,时有,m不等于n时,没行列式一般说的是方阵行列式再问:真的吗?咋感觉怪怪的再答:你可以把行列式看成函数,其定义域就是方阵再问:其实我知道,但很奇怪的问了这个问题,谢了