n阶矩阵A的特征值为1,2,...n,B与A相似则B的特征多项式为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:21:37
n阶矩阵A的特征值为1,2,...n,B与A相似则B的特征多项式为
已知三阶矩阵A的特征值为-1,2,3,则(2A) ^(-1)的特征值为?

设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1

设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为?

∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特

已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

已知3阶矩阵A的特征值为1、2、-3,则它的逆矩阵的特征值是?

|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-

A为n阶矩阵,若已知A^2=0矩阵,能否推出A的特征值全部为0?

肯定是设x为A的属于特征值i的特征向量,那么Ax=ix从而AAx=Aix也就是A^2x=i(Ax)=i^2x从而i^2x=0,也就是i^2=0从而i=0由于i是A的任意一个特征值,所以A的全部特征值全

设n阶矩阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

已知n阶矩阵A的特征值为λ1,λ2,……,λn,p(x)为x的多项式,求 p(A)的特征多项式

设λ为n阶矩阵A的特征值,p(x)为x的多项式,则p(λ)为p(A)的特征值,故:p(A)的特征值为p(λ1),p(λ2),……,p(λn)从而p(A)的特征多项式为:[λ-p(λ1)][λ-p(λ2

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

线性代数矩阵秩A为3阶矩阵的特征值为0,0,2,就我所知,若0为矩阵的特征值,则|A|=0,即它的秩小于3,若n阶矩阵不

1对.矩阵经初等行变换秩不变.这是性质,初等变换只是个工具,还不让用辅助定理了?他可以初等变换成k阶单位阵加0元素.秩明显为k

已知三阶矩阵A的特征值为1,-2,3,则(2A)、 A^(-1)的特征值为?

|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式

设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值______

假设λ是A的任意一个特征值,其对应的特征向量为x,则由|A|≠0知λ≠0,且Ax=λx (x≠0),得:A−1x=1λx,于是,|A|A−1x=|A|λx,而:|A|A-1=A*,则:A*x

三阶矩阵A的特征值为1,2,3,则A^2+E的特征值为

AX=λX(A^2)X=(λ^2)XEX=X(A^2+E)X=(λ^2+1)XA^2+E的特征值为2,5,10再问:谢谢你

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

n阶矩阵A的秩为n-1,求A的伴随矩阵的特征值与特征向量

(A)=n-1,则r(A*)=1.此时A*A=|A|E=0所以A的非零列向量都是A*的属于特征值0的特征向量再问:我看答案特征值是0和对角线上元素的代数余子式的和,就是A11+A22+……Ann请问这

若n阶矩阵A有n个属于特征值1的线性无关的向量,怎么证此时A为n阶单位矩阵.

把n个线性无关的特征向量拼成一个可逆阵P=[x1,x2,...,xn],那么AP=P=>A=I再问:лл�����Ѿ�������ˣ�һʱ��Ϳ���ܼ

若3是n*n阶矩阵A的特征值,行列式|A|=2,则A的伴随矩阵的一个特征值为几?为什么?

一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.

已知3阶矩阵A的特征值为1、-1、2,则矩阵A2+2E的特征值为

A2的特征值为1,1,4A2+2E的特征值为3,3,6

设A为m*n阶实矩阵,X为(0,A;AT,0)的非零特征值,证明X^2为ATA的特征值

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!