n阶矩阵a,矩阵a平方等于矩阵a,但矩阵a不等于单位矩阵证明矩阵a的行列式等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:15:40
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的
是要证明A的特征值是0或-2吧f(x)=x^2+2x是A的一个化零多项式,于是A的特征值只能是化零多项式的根,于是A的特征值是0或-2
A的第i行乘-1等于第i列乘-1,故对角线以外的元素均为0A的第i,j行互换等于第i,j列互换,故对角线上元素相等.
一楼用《矩阵论》来解可能LZ不懂啦.其实就用《线性代数》也能搞定的.A^2-A=0(此处的0表示零矩阵)那么根据秩的不等式:r(A)+r(I-A)-n
楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^
A*是伴随矩阵A的余子矩阵是一个n×n的矩阵C,使得其第i行第j列的元素是A关于第i行第j列的代数余子式.引入以上的概念后,可以定义:矩阵A的伴随矩阵是A的余子矩阵的转置矩阵.
这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从
(A)=r的定义为存在r阶子式不等于零,任意的大于r阶子式均为0有的书上也定义为存在r阶子式不等于零,任意的r+1阶子式均为0两个是等价的,因为r+2阶子式的余子式是r+1阶子式,如果r+1阶子式均为
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
A*A=A若A可逆,则左右乘以A的逆,得到A=E,而这与当A=0时式子也成立矛盾
1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A
证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗