n阶正交矩阵的充分必要条件是行列向量组是正交的单位向量组
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:00:17
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
设k是A的特征值则k是A^T的特征值,1/k是A^-1的特征值因为A正交,则A^-1=A^T所以k=1/k所以k=1or-1若A正定,则k=1.所以A的特征值都是1.所以A与单位矩阵相似所以A=E.反
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
不仅如此,还有A1.,……,An都相似于对角阵,AiAj=AjAi.(i≠j).则存在公共的满秩方阵P.使P^(-1)AiPi=1,……,n.同时为对角形.(这是1978年武汉大学代数方向硕士生入学复
题解中设A是三个行向量(即把A的每一行看做一个向量,这个是第一步您应该明白)第二个等号就是分块矩阵的乘法A是正交矩阵,所以,题解中就有“所以”后面的东东了希望我的解释能够帮到您
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量![证明]充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXii=1,2,……,nA[X1X2……Xn]=[入1X1
设b=aTa,注意aTa为一个数字.A为正交矩阵==>AAT=E而AAT=(E-kaaT)(E-kaaT)T注意到ET=E,(aaT)T=aaT=(E-kaaT)(E-kaaT)=E-2kaaT+k^
证明:如果A对称,则A-A'=0对称.如果A-A'对称,又A+A‘对称.所以A=1/2(A-A’)+1/2(A+A’)对称.
证明:如果A对称,则A-A'=0对称.如果A-A'对称,又A+A‘对称.所以A=1/2(A-A’)+1/2(A+A’)对称.
对选项(A)和(B):举反例A=1212,任一行列向量都是非零向量,但A不可逆;故排除选项A和B.对选项(C):举反例,如A为n阶方阵,.A为增广矩阵,当:r(A)=r(.A)<n时,Ax=b有无穷多
简单的说就是对于一个矩阵A,A×A′=I,A'是A的共轭矩阵,I为单位举证,共轭就是把虚部前面的正负号颠倒.
证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(
(=>)因为A正定,所以X^TAX的规范形为y1^2+...+yn^2所以存在可逆矩阵C满足C^TAC=E所以A合同于单位矩阵(再问:为什么从规范形得出存在可逆矩阵C,满足那个式子?谢谢老师:)