n阶方阵,|A|=2,则|-A²|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:26:40
n阶方阵,|A|=2,则|-A²|=
求教!】A是n阶方阵,A^2=A,证明:A相似于对角矩阵

证明:因为A^2=A,所以A(A-E)=0所以r(A)+r(A-E)

A是n阶方阵,满足A^2-2A-2E=0,则(A+E)^-1=

3E+2A-A^2=E(3E-A)(E+A)=E所以(A+E)^-1=3E-A

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

A是n(n>=2)阶方阵,则r(A*)= n,如果r(A)=n 1,如果r(A)=n-1 0,如果r(A)

在这里:\x0d\x0d\x0d你去我空间相册看看吧,有些结论的图片我都放那里了.

试证若n阶方阵A满足A^2=A,则A的特征值为0或1

A(A-E)=0,|0E-A|*|1E-A|=0,特征值为0或1.或者设特征值为r,特征向量a,有Aa=ra,A^na=r^na,A^2-A=0,A^2a-Aa=0,r^2-r=0,则r=0或1.

已知A为n阶方阵且A^2=A,求A的全部特征值.

1.设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a

n阶方阵与某一对角矩阵相似 A.方阵A的秩序等于n对不对

不对.相似矩阵有相同的秩A的秩等于那个对角矩阵主对角线上非零元素的个数

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

设A是n阶方阵(n>=2),且|A|=1则|2A|=多少

|2A|=2,方阵是行与列相同的矩阵.对于矩阵A,|A|就是矩阵的模,也是它对应的行列式的值.由行列式性质可以知道,将行列式中每个数同乘以k,值也乘以k.

4.若n 阶方阵 A满足,A^2=0 则下列命题哪一个成立 ( ).

要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n

设n阶方阵A满足A^2+A+2E=0,则(A+E)^-1=?

由A^2+A+2E=0,可以写成(-A/2)(A+E)=E,所以(A+E)^-1=-A/2.

证明:设A是n阶方阵,若A^2=0,则A=0

例如A=(01)(00)则A≠0且A^2=0

设A*为n阶方阵A的伴随矩阵,则AA*=A*A=

这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.

设n阶方阵A的行列式|A|=1,则|2A|=

|2A|=2^n再问:能讲一下过程吗再答:|2A|=2^n|A|=2^n

若n阶方阵A满足,A^2=0,则以下命题哪一个成立?

选D利用Sylvester不等式rank(A)+rank(B)