n元线性方程组 有无穷多个解的充分必要条件是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:55:24
写出增广矩阵为11t41-12-4-1t1t²第2行减去第1行,第3行加上第1行~11t40-22-t-80t+1t+1t²+4方程有无穷多解,那么系数行列式一定为0,所以(t+1
|A|=|11t||1-12||-1t1||A|=|12t-2||100||-1t-13||A|=(-1)*|2t-2||t-13|A|=-[6-(t-1)(t-2)]=0,得t=4,-1.当t=-1
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
不一定x+2y+z=1x+2y+z=23个未知数但显然两个不能同时成立所以无解
矩阵A的秩等于矩阵A的增广矩阵的秩所以AX=b必有解又因为A的秩
增广矩阵=11-1123a31a32r2-2r1,r3-r111-1101a+210a-141r3-(a-1)r211-1101a+2100-(a-2)(a+3)-(a-2)当a=-3时,无解当a=2
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
m个方程n元未知量的线性方程组当系数矩阵的秩小于m时,不能确定系数矩阵与增广矩阵之间秩的关系,应该选d再问:好的好的,,谢谢您再问:能不能再问您几道题啊。。。再答:好的再问:再问:第四题再问:再问:这
n元线性方程组AX=b有唯一解的充分必要条件是r(A)=r(A,b)=nr(A)=n并不能保证r(A)=r(A,b)比如增广矩阵=111011001r(A)=2,r(A,b)=3
矩阵秩的大小和矩阵的行数、列数没有直接关系,只有一个不等式关系,秩不超过行数,也不超过列数.所以判断行数、列数大小不能得到秩的大小.再问:我问得是判断解,不是判断秩再答:判断解得先判断秩。再问:再问:
Ax=0无非零解时.则A为满秩矩阵.则Ax=b一定有解Ax=0有无穷多解时,则A一定不为满秩矩阵,Ax=b的解得情况有无解和无穷多解无R(A)≠R(A|b)无穷R(A)等于R(A|b).且不为满秩Ax
错误.若线性方程组AX=B有无穷多解,则它所对应的齐次线性方程组AX=0有无穷多解
很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.
R(A)=R(Ab)
AX=b有无穷多解的充要条件是r(A)=r(增广矩阵)所以AX=0有非零解事实上,AX=b的两个不同解的差就是AX=0的一个非零解再问:可是为什么R(A)=r<n,Ax=0有非零解,Ax=0有非零解助
写出方程的增广矩阵为γ11γ+21γ2422γγ^2+4第1行减去第2行*γ,第3行减去第2行*2,交换第1和第2行1γ2401-γ^21-2γ-3γ+202-2γγ-4γ^2-4第2行乘以2,第2行
由于n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n①选项A.导出组Ax=0仅有零解只能说明r(A)=n,并不能保证r(A)=r(.A)=n,故A错误;②选项B.n元线性方程组Ax=b
因为有无穷多个解所以矩阵1-1-3201a-2a3a516的秩小于31-1-3201a-2a0a+314101-1-3201a-2a0014-(a-2)(a+3)10-a(a+3)14-(a-2)(a