n从1到无穷大ln(2n 3 2n 1)判别级数的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:46:24
斜率ln(1+3x)=3斜率sin4x=4ln(1+3x)/sin4x的极限3/4N[ln(5+N)-lnN]=nln(1+5/n)n=5tnln(1+5/n)=5ln[(1+1/t)^t]=5lne
泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
对于n充分大,2^(n^2)=(2^n)^n>=n^n>n!,所以不收敛
换元t=lnxdt=dx/x所以原式=∫(dx/x)1/(lnx)^2=∫dt/t^2=-1/t+C=-1/lnx+C代入x=无穷ln无穷=无穷1/无穷=0得0代入x=elne=1得-1一减,积分=1
e^(-x)=1-x/1!+x^2/2!-x^3/3!+...+(-1)^n*x^n/n!+...x∈R即:e^(-1)=1-1/1!+1/2!-1/3!+...+(-1)^n/n!+...=(1/2
易见收敛半径为1.对|x|
n[ln(n+2)-lnn]=nln(n+2)/n=nln(1+2/n)=2ln[(1+2/n)^(n/2)]当n趋于无穷时(1+2/n)^(n/2)趋近于e所以n[ln(n+2)-lnn]=2ln[
f(x)=1+(En从一到无穷大((-1)^n)x^2n/2n)f'(x)=(En从一到无穷大((-1)^n)x^2n-1=-x/(1+x^2)f(x)=-1/2ln(1+x^2)+f(0)收敛区间[
令y=n-ln(n)所以y´=1-1/n当n趋近于无穷大时1/n趋近于0所以y´=1-1/n>0所以函数y在(1,∞)上单调递增当n趋近于无穷大时y也趋近于无穷大所以1/y趋近于0
n趋向于无穷时,ln(e^n+x^n)/n属于无穷比无穷型.用罗比达法则求一次导得(e^n+(x^n)*lnx)/(e^n+x^n)..常数分离得lnx+(1-lnx)/[1+(x/e)^n]讨论:若
再问:不好意思,题目抄错了,是n(n+2)/2^n=10再答:下面的这种算法好像简单一些还有一种方法
除以(根号下n)分之一与n-1分之2,判断下面敛散性即可
sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p
再问:对数公式你记错了兄弟再答:信不信随你再问:答案是发散的再答:要是还是有疑惑,可以去翻书,但不要随便否定再问:再问:再问:不是随便否认的再答:是我错了再答:再问:哦比较法再答:嗯再问:再问:用分布
在a不等于1时级数收敛,分析如图.再答:
ln(n+2)-ln(n+1)可以化成ln(1+1/n+1),n趋于无穷大,则有1/n+1趋于零,所以limnln1,算得结果为0
方法1比较审敛法:因为lnn>1得1/(n×lnn)
lim(n->∞)n[ln(n-1)-lnn]=lim(n->∞)ln(1-1/n)/(1/n)令u=1/n=lim(u->0)ln(1-u)/uo/o洛必达法则=lim(u->0)1/(u-1)=-
http://zhidao.baidu.com/question/497122910777104204再问:但是图看不清楚啊