n个方程组n 1个未知数一定线性相关吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:12:23
n个方程组n 1个未知数一定线性相关吗
N+1个N维向量一定线性相关怎么理解?

所以b可以由向量组表示,即(a1,a2,.an,b)线性相关,所以与假设矛盾!所以N+1个N维向量一定线性相关.

n个n维向量线性无关的证明

这个证明不对,除非你能够证明出(1)是b的唯一表示法,否则这样是不行的.充分性:取n个线性无关的n维向量b1,b2,..,bn,由必要性知任一n维向量均可由b1,b2,...,bn线性表示,也就是说a

为什么不同特征值对应的特征向量一定线性无关?还有怎么判断一个n阶矩阵有n个线性无关的特征向量?

特征值a的几何重数就是 n-r(A-aE)也就是齐次线性方程组 (A-aE)X=0 的基础解系所含向量的个数几何重数不超过代数重数

当m>n时,m个n维向量一定线性( ,

相关,证m个n维向量α1,α2,…,αm构成的矩阵An×m=(α1,α2,…,αm),则R(A)≤n.因为n次线性方程组Ax=x1α1+x2α2+…+xmαm=0有非零解.m个n维向量向量α1,α2,

大侠帮忙,matlab解方程组 (5个方程,5个未知数)

A=solve('1/lambda_s+1/lambda_i-1/1064','n_p/1064-n_s/lambda_s-n_i/lambda_i-1/31500','n_p^2-(5.319725

2元一次方程组有3个未知数的方程

有无数组解.能够整理到201y+301z=1000,yz值随便

n+1个n维向量一定线性相关,能大概解释一下吗,有助于理解和记忆!

结论:1.若齐次线性方程组Ax=0中A的行数小于列数,即方程的个数小于未知量的个数则方程组有非零解.2.向量组a1,...,as线性相关齐次线性方程组(a1,...,as)X=0有非零解.因为n+1个

n维向量空间里n个线性无关的向量是否一定能线性表示出所有此空间中的向量?求证明

可以.一个向量b能否由一个向量组a1,...,as线性表示等价于线性方程组x1a1+...+xsas=b是否有解即(a1,...,as)x=b是否有解.n维向量空间里n个线性无关的向量a1,...,a

如果方程含有( )个未知数,且含有未知数的项的( ),这样的方程组叫做三元一次方程组.

如果方程含有(三)个未知数,且含有未知数的项的(次数都为1),这样的方程组叫做三元一次方程组.

如何用matlab解4个未知数的指数方程组

symsabcA=solve('0.0009=a+b*(1-exp(-10*c)','0.0015=a+b*(1-exp(-100000*c))','0.003=a+b*(1-exp(-1000000

为什么n+1个n维向量一定线性相关?

把n+1个n维列向量排成一个n×(n+1)型矩阵.这个矩阵的秩一定是不大于n的.所以这n+1向量组的秩不大于n,所以线性相关.

任意多于n个向量的n维向量组一定_____.A.线性相关 B.线性无关 C.正交 D.秩>=0

A线性相关.个数大于维数必相关.因为此时对应的齐次线性方程组的未知量个数大于方程的个数,所以有非零解故向量组线性相关.再问:齐次线性方程组何时有非零解?再答:齐次线性方程组何时有非零解系数矩阵的秩大于

关于n+1个n维向量是否一定线性相关

是..可以用反证法证明

设n元齐次线性方程,r(A)=n-3,且a1,a2,a3是其3个线性无关的解,则方程组的基础解系是(

C再问:同学,不好意思,再问一下,为什么A不对?再答:因为n-3=a2+a3=a6所以A中a1+a2错再问:a6?C里也有a1+a2啊?不好意思,不懂再答:性质不同。再问:啊?我还是不懂再答:这个讲起

n+1个n维向量必定线性相关,而线性相关于线性无关又与方程组的解联系起来了,这其中我有一些不明白.线性相关于线性无关其实

先说线性无关的情况吧,如果n个向量线性无关,说明有用的方程就有n个(也就是秩的值),这时,1、如果未知数的个数大于n(未知数个数多于方程个数),肯定就有无穷多组解;2、如果未知数个数等于n(n个未知数

任意n+1个n维向量必线性

是啊假设他们非线性,那岂不N+1维了

非齐次线性方程组Ax=b中,m*n矩阵A的n个列向量线性无关,则方程组有唯一解.

对的根据你的题目,方程组有n个未知量,而方程组的秩也为n所以方程组有唯一解