n² n!的和函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:54:28
设S(x)=∑(x^n)/n,由系数比值法易求出收敛域为[-1,1)求导,得S'(x)=∑x^(n-1),此为几何级数所以S'(x)=1/(1-x)两端求定积分,积分限取为0和x则得S(x)-S(0)
记f(x)=∑(n=2~∞)[nx^(n-1)]/(n-1)=∑(n=2~∞)x^(n-1)+∑(n=2~∞)[x^(n-1)]/(n-1)=g(x)+h(x),利用已知级数∑(n=1~∞)x^(n-
f(x)=∑x^n/[n(n+1)]求导:f'(x)=∑x^(n-1)/(n+1)F=x^2f'(x)=∑x^(n+1)/(n+1)再求导:F'=∑x^n=x/(1-x)=1/(1-x)-1积分:F=
设s(x)=∑x^n/n!(n=0到无穷大)则,a(n+1)/a(n)=n!/(n+1)!=1/(n+1)--->0R=+∞收敛域:(-∞,+∞)s'(x)=∑x^(n-1)/(n-1)!(n=1到无
输入符号需要时间,马上写来,等下.再答:级数∑(0,+∞)[1/n!]x^(2n+1)=x∑(0,+∞)[1/n!]x^(2n)=xe^(x^2)(|x|
∑[(-1)^(n-1)](x^n/n)求导得:∑[(-1)^(n-1)]x^(n-1)=∑(-x)^(n-1)(n从1起)=1/(1+x)积分得:∑[(-1)^(n-1)](x^n/n)=ln(1+
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
e^(-x^2)(负号在x^2外面)你去看看e^x的幂级数展开,然后作变量代换(因为e^x是在整个实轴上展开的,所以不必担心变量代换以后收敛半径的问题)
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
Σ(n=0~∞)x^n/n!2^n =Σ(n=0~∞)(x/2)^n/n!=e^(x/2),-inf.
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
分子分母同时乘以二化为[∞∑n=1][2^n×x^n]/2(n!),整理[∞∑n=1]﹙2x﹚^n/(n!)×1/2,由公式e^x=[∞∑n=1]x^n/(n!)可得1/2e^2x
利用利用逐项积分可记 S(x)=Σ(n=1~inf)[(n+1)x^n],积分,得 ∫[0,x]S(t)dt=Σ(n=1~inf)∫[0,x][(n+1)t^n]dt =Σ(n=1~inf
n从0开始?∑[(-1)^n/3^n]x^n=∑[(-x/3)^n,此为等比级数,所以当|-x/3|<1,即|x|<3时,幂级数收敛,其和函数自然是1/[1-(-x/3)]=3/(3+x)