记sn使各项均为正数的等差数列an的前n项和,若a大于等于1则,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:26:46
记sn使各项均为正数的等差数列an的前n项和,若a大于等于1则,
设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列

{根号Sn}的公差为d的等差数列√Sn=√S1+(n-1)dSn=[√S1+(n-1)d]^2=S1+(n-1)^2d^2+2√S1(n-1)dS2=S1+d^2+2√S1dS3=S1+4d^2+4√

各项均为正数的数列an的前n项和为Sn,已知2a2=a1+a3,数列根号Sn是公差为d的等差数列

√S2=√S1+d=√a1+d,S2=(√a1+d)²=a1+d²+2d√a1a2=S2-S1=a1+d²+2d√a1-a1=d²+2d√a1a3=2a2-a1

设各项均为正数的数列{an}的前n项和为Sn,已知2an=a1+a3 数列{根号Sn}是公差为d的等差数列

这是今年江苏卷上的题目…………(1)设根号Sn=d*n+HSn=d^2*n^2+2*d*H*n+H^2a1=S1=d^2+2*d*H+H^2a2=S2-S1=3*d^2+2*d*Ha3=S3-S2=5

数学等差数列题设各项均为正数的数列{an}的前n项和为Sn.已知2×a2=a1+a3,数列{√Sn}是公差为d的等差数列

√Sn=√S1+(n-1)d√S2=√S1+d√S3=√S1+2d第2个式子两边平方a1+a2=a1+2(√a1)d+d^2第3个式子两边平方a1+a2+a3=a1+4(√a1)d+4d^2两个式子相

设各项均为正数的数列{an}的前项和为sn,已知2a2=a1+a3,数列{根号sn}是公差为2的等差数列,

结果是an=4(2n+1);首先由s1,s2,s3的关系可列出两个方程,关于a1,a2,a3.和已知的2a2=a1+a3联立,求出a1=4.接下来,利用根号sn是等差数列,推导出s(n)和a1的关系,

\已知等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=2,且b2S2=32,b3S3

2S2=b2(a1+a2)=b1*q*(2a1+d)=32,b3S3=b3(a1+a2+a3)=b1*q²*(3a1+3d)=120,得d=2(都是正数),q=2.∴an=a1+d(n-1)

等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}等比,b1=1,且b2b2S2=64,b3S3=960

a1=3,所以S2=6+d,S3=9+3db1=1,b2=q,b3=q^2所以(6+d)q=64(9+3d)q^2=960相除(9+3d)/(6+d)*q=15q=15(6+d)/(9+3d)代入(6

等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,

公差64的等比数列?q=64?→d=-5,这样就很明显了..再问:麻烦看下问题补充再答:公差d,公比q,由已知可得方程(6+d)*q=64,q的d次方=64({ban}公比64),2个方程解出d=2,

等差数列{an}的各项均为正数,a1=3,其前项和为Sn,{bn}为等比数列,b1=1且b2S2=16,b3S3=60.

设{an}公差为d,数列各项均为正,则d≥0.设{bn}公比为q.b2S2=q(2a1+d)=q(d+6)=16b3S3=q²(3a1+3d)=q²(3d+9)=60q(d+6)=

已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列

1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=

求证等差数列!已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=a∧2n+n-4

n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a

已知各项均为正数的等差数列{An},满足An,Sn,An的平方 成等差数列 求S100

可用递推法:2Sn=An+An*An递推2Sn-1=An-1+An-1*An-1两市相减,得:An+An-1=An*An-An-1*An-1因为An为正数,所以An-An-1=1之后求An,然后用求和

各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列

sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1

数列an的各项为正数,Sn为其前n项和,总有2an,2Sn,an^2成等差数列,则a2010=什么

4Sn=2an+an^24S(n-1)=2a(n-1)+a(n-1)^2相减得4an=2an-2an(n-1)+[an+a(n-1)][an-a(n-1)]2[an+a(n-1)]=[an+a(n-1

已知数列{an}的各项均为正数,其前n项和为Sn,若{log2an}是公差为-1的等差数列,且S6=38

∵{log2an}是公差为-1的等差数列∴log2an=log2a1-n+1∴an=2log2a1−n+1=a1•2−n+1∴S6=a1(1+12+…+132)=a1•1−1261−12=38,∴a1

已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式

Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比

已知各项均为正数的数列{an}前n项和为Sn,首相为a1,且½,an,Sn是等差数列,求通项{an}公式

由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=

已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,12成等差数列,

(1)由Sn,an,12成等差数列,可得2an=Sn+12,∴a1=12,a2=1(2)由2an=Sn+12可得,2Sn=4an-1(n≥1),∴2Sn-1=4an-1-1(n≥2)∴两式相减得2an

已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,1/2成等差数列

由题意2an=Sn+1/2Sn=2an-1/2n=1时,S1=a1a1=2a1-1/2a1=1/2S(n+1)-Sn=a(n+1)2a(n+1)-1/2-[2an-1/2]=a(n+1)a(n+1)=