记sn使各项均为正数的等差数列an的前n项和,若a大于等于1则,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:26:46
{根号Sn}的公差为d的等差数列√Sn=√S1+(n-1)dSn=[√S1+(n-1)d]^2=S1+(n-1)^2d^2+2√S1(n-1)dS2=S1+d^2+2√S1dS3=S1+4d^2+4√
√S2=√S1+d=√a1+d,S2=(√a1+d)²=a1+d²+2d√a1a2=S2-S1=a1+d²+2d√a1-a1=d²+2d√a1a3=2a2-a1
这是今年江苏卷上的题目…………(1)设根号Sn=d*n+HSn=d^2*n^2+2*d*H*n+H^2a1=S1=d^2+2*d*H+H^2a2=S2-S1=3*d^2+2*d*Ha3=S3-S2=5
√Sn=√S1+(n-1)d√S2=√S1+d√S3=√S1+2d第2个式子两边平方a1+a2=a1+2(√a1)d+d^2第3个式子两边平方a1+a2+a3=a1+4(√a1)d+4d^2两个式子相
结果是an=4(2n+1);首先由s1,s2,s3的关系可列出两个方程,关于a1,a2,a3.和已知的2a2=a1+a3联立,求出a1=4.接下来,利用根号sn是等差数列,推导出s(n)和a1的关系,
2S2=b2(a1+a2)=b1*q*(2a1+d)=32,b3S3=b3(a1+a2+a3)=b1*q²*(3a1+3d)=120,得d=2(都是正数),q=2.∴an=a1+d(n-1)
a1=3,所以S2=6+d,S3=9+3db1=1,b2=q,b3=q^2所以(6+d)q=64(9+3d)q^2=960相除(9+3d)/(6+d)*q=15q=15(6+d)/(9+3d)代入(6
公差64的等比数列?q=64?→d=-5,这样就很明显了..再问:麻烦看下问题补充再答:公差d,公比q,由已知可得方程(6+d)*q=64,q的d次方=64({ban}公比64),2个方程解出d=2,
设{an}公差为d,数列各项均为正,则d≥0.设{bn}公比为q.b2S2=q(2a1+d)=q(d+6)=16b3S3=q²(3a1+3d)=q²(3d+9)=60q(d+6)=
1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=
n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a
可用递推法:2Sn=An+An*An递推2Sn-1=An-1+An-1*An-1两市相减,得:An+An-1=An*An-An-1*An-1因为An为正数,所以An-An-1=1之后求An,然后用求和
sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1
4Sn=2an+an^24S(n-1)=2a(n-1)+a(n-1)^2相减得4an=2an-2an(n-1)+[an+a(n-1)][an-a(n-1)]2[an+a(n-1)]=[an+a(n-1
∵{log2an}是公差为-1的等差数列∴log2an=log2a1-n+1∴an=2log2a1−n+1=a1•2−n+1∴S6=a1(1+12+…+132)=a1•1−1261−12=38,∴a1
根号Sn的通项公式是nSn=n^2an=Sn-Sn-1=n^2-(n-1)^2=2n-1
Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比
由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=
(1)由Sn,an,12成等差数列,可得2an=Sn+12,∴a1=12,a2=1(2)由2an=Sn+12可得,2Sn=4an-1(n≥1),∴2Sn-1=4an-1-1(n≥2)∴两式相减得2an
由题意2an=Sn+1/2Sn=2an-1/2n=1时,S1=a1a1=2a1-1/2a1=1/2S(n+1)-Sn=a(n+1)2a(n+1)-1/2-[2an-1/2]=a(n+1)a(n+1)=