nx^n的收敛域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:06:59
令F(x)=x^n+nx-1分别取x=1,x=0,有F(1)=n,F(0)=-1,则F(0)*F(1)0)又显然F(x)在[0,1]上连续,在(0,1)上可导,由零值定理得存在一Xn属于(0,1)使得
lim(n+1)|x|^(n+1)/n|x|^n
把求和项里的x提出来一个s(x)/x=∑(n=1,∞)nx^(n-1)两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1,(|x|
用你在下面问题里方法就能算了(不过最后积分时落了负号).结果是-ln(√(2-2cos(x)))=-ln(2|sin(x/2)|).注意在x→2kπ时函数值趋于正无穷,这与级数在x=2kπ处发散相吻合
易知收敛域为(-1,1),因为nx^(n-1)=(x^n)的导数,所以∑nx^(n-1)=(∑x^n)的导数,求得和函数为1/(1-x)^2.再问:神人也!哈,请在详细点可否,小弟我可没那么聪明哦再答
设S(x)=∑(n=1到∞)nxˆ(n-1),S(0)=1逐项积分得:∑(n=1到∞)xˆ(n)=x/(1-x)|x|
用柯西判别法可以判断收敛半径为1,另外在1处显然发散,在-1处为莱布尼茨型级数显然收敛,所以收敛域为[-1,1),令S=∑(∞,n=1)1/nx∧n,则S′=∑(∞,n=1)x∧(n-1)=1/(1-
可用求积求导法求和函数.经济数学团队帮你解答.请及时评价.谢谢!再问:我可以问下,你求敛散时候,根据比值收敛法得出大于1,可以知道/nx^(n-1)/发散,可是绝对值发散不能得出没加绝对值发散,而绝对
后项比前项的绝对值的极限=|x-1|/2 收敛半径R=2x=3级数发散,x=-1级数收敛 收敛域[-1,3)
令原式=f(x)=∑nx^n积分得:F(x)=∑x^(n+1)=x^2/(1-x),当|x|
另an=nx^(n-1)由a(n+1)/an=(n/(n-1))*x
用比值判别法(ratiotest)令an=n!*2^(-nx)/n^na(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)=2^(-x)*n^n/(n+1)^n=2^(-x)*[
令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,
对的,根据狄利克雷判别法即可
我帮你详细地证明了一下,详见下图
∑nx^n=x∑nx^(n-1)=x(∑x^n)'=x(x/(1-x))'=x/(1-x)^2
∑(∞,n=1)2nx^(2n-1)/(2n-1)收敛域及和函数1.收敛域显然收敛区间为(-1,1)2nx^(2n-1)/(2n-1)=(2n-1+1)x^(2n-1)/(2n-1)=x^(2n-1)
∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再
1.如果f可积,那么因为在一个周期上,所以f^2可积.另外对于f,bn=1/sqrt(n),于是有∑bn^2发散,而由parseval等式可知这是不可能的.2.1)级数正规收敛,所以一致收敛,所以函数