计算积分∫∫ZdS,其中∑为球面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:47:47
计算积分∫∫ZdS,其中∑为球面
计算定积分I=∫(0→π)f(sinx)/[f(sinx)+f(cosx)]*dx,其中f(x)为连续函数,且f(sin

令u=π/2-x则x=π/2-u原积分=∫(π/2→0)f(sin(π/2-u))/[f(sin(π/2-u))+f(cos(π/2-u))]d(π/2-u)=-∫(π/2→0)f(cosu)/[f(

计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分

再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.

因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住

计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与

用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3

12.计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2小于等于3}

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2小于等于3}

用极坐标:∫∫1/√(1+x^2+y^2)dxdy=∫(0,2π)dθ∫(0,√3)r/1/√(1+r^2)dr=2π[√(1+r^2)]|(0,√3)=2π(2-1)=2π

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域

Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^

利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2

为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分

计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.

计算积分上限是π 下限是0 ∫[sin(2n-1)x]/sinx dx ,其中n为正整数

利用等式:sin(2k+1)x-sin(2k-1)x=2sinxcos2kx,1

计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域

就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1

计算定积分 ∫r³√(,R-r²)dr 其中 r从0 到1,R为已知

令r=Rsint,dr=Rcostdt,代入瞬间秒杀!再问:这个我知道,但是那个积分上限要出问题,麻烦你解出来给我看下再答:写得我手都抖了。。。再问:我想问一个问题,你的r=Rsint,然后你的r=0

L∫xydx,其中L为y^2=x上,从A(1,-1)到B(1.1)的一般弧,计算第二类曲线积分

y²=x==>y=±√x∫_L(xy)dx=∫_(点A到原点)(xy)dx+∫_(原点到点B)(xy)dx=∫(1~0)x(-√x)dx+∫(0~1)x(√x)dx=∫(0~1)(x√x+x

计算对弧长的曲线积分∫y^2ds,其中C为右半单位圆周,答案是π/2,

C为右半单位圆周化为参数方程x=costy=sintt∈[-π/2,π/2]∫Cy²ds=∫[-π/2,π/2]sin²t√[(dx/dt)²+(dy/dt)²