计算由四个平面x=0y=0x=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:06:06
计算由四个平面x=0y=0x=1
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

计算由坐标面,平面x=4,y=4及抛物面z=x*x+y*y+1所围立体的体积

v=∫∫f(x,y)dσ区域D=∫(0-4)dx∫(0-4)x^2+y^2+1dy=∫(0-4)dx(x*x*y+1/3y*y+y)|(4-0)=∫(0-4)(4*x*x+76/3)dx=(4/3x^

计算三重积分 ∫∫∫Zdv,其中Ω是由上球面Z=根号(4-x^2-y^2 )及拉面x^2+y^2=1.平面Z=0所围成的

这是柱面、锥面与z=0所围区域,你需要自己会画图,这个立体在锥面之内,柱面之外.本题最简单的方法是截面法(先2后1),先做二重积分,再对z作定积分.用z平面截立体,所得截面为一圆环Dz:1≤x

怎么计算由四个平面X=0,Y=0,X=1,Y=1所围成的柱体被平面Z=0及2X+3Y+Z=6截得的立体体积

11∫∫(6-2x-3y)dxdy=3.500如果没学过高等数学,那么原立体是从X=0,Y=0,X=1,Y=1,Z=0,Z=6这个长方体上切下一块来,而切下来的这一块体积就是底面积为1,高为5的长方体

1.计算由y=x²,y=2x所围成的平面图形的面积

画了个图,比较难画, 比较粗糙啊.有点不清楚,另存到电脑就可以看清楚了

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

算一个高数题目计算∫∫xydxdy,其中D由y=根号x,x+y=2,y=0围成的平面区域我这么化简的∫(下界0上界1)d

你把区域弄错了,y=0是x轴,你看成y轴了先y后x的次序:∫(下界0上界1)dx∫(下界0上界√x)xydy+∫(下界1上界2)dx∫(下界0上界2-x)xydy先x后y的次序:∫(下界0上界1)dy

计算由曲线y=x^2与x+y+2所围成的平面区域的面积急

由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-

二重积分的计算问题~求由平面z=x-y,z=0与圆柱面x^2+y^2=2x在z>=0中所围成的空间体的体积.积分区域底面

=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r

计算由平面Z=0及旋转抛物面Z=1-X²-Y²所围成的立体的体积

旋转抛物面z=1-x^2-y^2与z=0(xoy平面)交线为一个半径=1的圆,方程为x^2+y^2=1,设该圆在第一象限部分与X轴和Y轴围成区域为D,根据对称性,V=4∫【D】∫(1-x^2-y^2)

计算由四面:x=0,y=0,x=1,y=1所围成的柱体被平面z=0及x+y+z=3/2截得的立方体体积

这题很简单.你学过微积分吗?z=3/2-x-y,∫∫(3/2-x-y)dxdy,积分域是0到1,2个都是,故解得答案是1/2.再问:当时老师讲的时候反反复复,最后也没讲清,只是说直线可

计算由四个平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体的体积

11∫∫(6-2x-3y)dxdy=3.500如果没学过高等数学,那么原立体是从X=0,Y=0,X=1,Y=1,Z=0,Z=6这个长方体上切下一块来,而切下来的这一块体积就是底面积为1,高为5的长方体

计算由四个平面:x=0,y=0,x=1,y=1所围成的柱体被平面z=0及x+y+z=3/2截得的立体体积.这道题目今天微

汗死!你画一个图,可知所得立体的底面为xoy平面内直线x=0,y=0,x=1,y=1围成的正方形,0

利用二重积分计算3/x+y/4+z/12=1,x=0,y=0,z=0四个平面围成的体积

把立体看作是一个曲顶柱体,曲顶是一个曲面z=f(x,y)=12-4x-3y,底面是xy坐标面上的闭区域D则体积V=∫∫(D)f(x,y)dxdy=∫∫(D)(12-4x-3y)dxdy底面是x=0,y

计算由四个平面x=0 ,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体体积

由2x+3y+z=6得z=6-2x-3y下式中(0,1)表示积分上限为1,(6-2x-3y)dxdy=∫(0,1)dx∫(0,1)(6-2x-3y)dy=∫(0,1)(6y-2xy-3/2y^2)|(

平面D由y=x²,x=0,y=1围成,计算∫∫xe^-y²dxdy

∫∫_(D)xe^(-y²)dxdy=∫(0→1)∫(x²→1)xe^(-y²)dydx=∫(0→1)∫(0→√y)xe^(-y²)dxdy=∫(0→1)[(x

计算二重积分∫∫√(Y平方减去XY)dxdy,D是由Y=X Y=1 X=0围成的平面区域

∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0