计算曲面z=x^2 y^2和平面z=x y所围成空间立体的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:08:11
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,
所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
以下计算的是由坐标面,平面x=0,x=2,y=0,y=2,z=0及曲面z=x²+y²+2所围立体的体积.采用二重积分法:I=(0,2)∫(0,2)∫(x²+y²
个人认为:x属于-1到1,y属于x^2到1.所求体积为∫从-1到1∫从x^2到1(x^2+y^2)dydx.不知道对不对~
这题用二重积分,三重积分都可求得.
角平分面必过平面1:x+2y-2z+6=0与平面2:4x-y+8z-8=0的交线可设角平分面的方程为λ(x+2y-2z+6)+4x-y+8z-8=(λ+4)x+(2λ-1)y+(8-2λ)z+(6λ-
二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2
ezmesh('sqrt(4-x^2-y^2)')
积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^
如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2
令P=yz,Q=0,R=x+2y+z,则αP/αx=0,αQ/αy=0,αR/αz=1故由奥高公式得∫∫(x+2y+z)dxdy+yzdydz=∫∫yzdydz+0*dzdx+(x+2y+z)dxdy
Ω:p²≤z≤10≤p≤10≤θ≤2π原式=∫∫∫p·pdpdzdθ=∫(0,2π)dθ∫(0,1)p²dp∫(p²,1)dz=2π∫(0,1)p²(1-p
∫∫∫ΩzdV=∫(0→1)zdz∫∫Dxydxdy=∫(0→1)z•π(2z)dz=2π•(1/3)[z³]|(0→1)=2π/3或∫∫∫ΩzdV=∫∫Dxydxd
先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17