计算曲面z=x^2 y^2和平面z=x y所围成空间立体的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:08:11
计算曲面z=x^2 y^2和平面z=x y所围成空间立体的体积
曲面z=x^2+y^2 被平面z=1 z=2所截曲面面积

-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

计算由曲面z=x^2+y^2,三个坐标面及平面x+y=1所围立体的体积,答案是1/6,

求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,

计算由曲面y^2=x及y=x^2和平面z=0,x+y+z=2所围成立体的体积

所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30

计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与

用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3

计算由三个坐标面,平面x=2. y=2及曲面z=x的平方+y的平方+2所围立体的体积怎么算?

以下计算的是由坐标面,平面x=0,x=2,y=0,y=2,z=0及曲面z=x²+y²+2所围立体的体积.采用二重积分法:I=(0,2)∫(0,2)∫(x²+y²

微积分.计算曲面 z=x^2+y^2,y=1,z=0,y=x^2,围成的立体体积.

个人认为:x属于-1到1,y属于x^2到1.所求体积为∫从-1到1∫从x^2到1(x^2+y^2)dydx.不知道对不对~

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

求平面x+2y-2z+6=0和平面4x-y+8z-8=0的夹角的平分面方程.

角平分面必过平面1:x+2y-2z+6=0与平面2:4x-y+8z-8=0的交线可设角平分面的方程为λ(x+2y-2z+6)+4x-y+8z-8=(λ+4)x+(2λ-1)y+(8-2λ)z+(6λ-

用二重积分计算由抛物面z=x^2+y^2及坐标平面和平面x+y=1所围成立体的体积

二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2

计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围

积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^

求曲面z=1 4x^2 y^2与xoy面所围成的立体的体积

如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2

计算下列对坐标的曲面积分.∮Σ∮(x+2y+z) dxdy + yz dydz,其中Σ为平面x+2y+z=6与坐标面所围

令P=yz,Q=0,R=x+2y+z,则αP/αx=0,αQ/αy=0,αR/αz=1故由奥高公式得∫∫(x+2y+z)dxdy+yzdydz=∫∫yzdydz+0*dzdx+(x+2y+z)dxdy

【三重积分】∫∫∫=√(x^2+y^2)dv,其中Ω是曲面z=x^2+y^2,和平面z=1所围的立体.

Ω:p²≤z≤10≤p≤10≤θ≤2π原式=∫∫∫p·pdpdzdθ=∫(0,2π)dθ∫(0,1)p²dp∫(p²,1)dz=2π∫(0,1)p²(1-p&#

计算三重积分fffzdxdydz,区域由旋转抛物面2z=x^2+y^2和平面z=1围成

∫∫∫ΩzdV=∫(0→1)zdz∫∫Dxydxdy=∫(0→1)z•π(2z)dz=2π•(1/3)[z³]|(0→1)=2π/3或∫∫∫ΩzdV=∫∫Dxydxd

计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0

先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0

高数曲面和积分问题平面H:4x+8y+z=k是曲面S:z=9-x^2-4y^2的切平面求k计算曲面S与xy平面包围的部分

记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17