计算二重积分∫∫d(6y x)d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:12:03
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤
答:设极坐标x=cosθ,y=sinθ,1
首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积
分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
D应该是x^2+y^2
【数学之美】团队为你解答,如果解决问题请采纳.
令x=rcosθ,y=rsinθ,则0<r<R,0<θ<2π.所以原积分=∫(0到2π)dθ∫(0到R)(6-3rcosθ-2rsinθ)rdr=∫(0到2π)[(3r^2-r^3cosθ-2/3×r
这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉
使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/
∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x
用直线x+y=π和x+y=2π将积分区间分成三部分则∫∫|sin(x+y)|δ=∫(0到π)dx∫(0到π-x)sin(x+y)dy-∫(0到π)dx∫(π-x到2π-x)sin(x+y)dy+∫(0
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
换元法x=rcosax^2+y^2≤1所以0
设x=rcosty=rsint-π/2
换成极坐标x=pcosty=psintp∈[0,a]t∈[0,2π]∫∫e^(-x^2-y^2)dδ=∫[0,2π]dt∫[0,a]e^(-p^2)pdp=t[0,2π]*[-1/2e^(-p^2)]
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/