计算二重积分∫∫(2xy-x∧2)dxdy,其中D是由y=x∧2及y=x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:06:33
原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱
下图用两种解法积分,点击放大:
【数学之美】团队为你解答,如果解决问题请采纳.
∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-
∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y
∫∫根号下(y^2-xy)dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy)dx]dy=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y)d(1-x/y]dy=∫(0,1)[∫(0,y
积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5
使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/
原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos
三个交点是(1,1),(2,2)和(2,1/2),积分区域是1
原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
极坐标下积分表达式变为r^2*r*dr*doo是极角关键是积分区域的变化首先积分区域在第一象限,此外x
可以使用符号函数,比如:%Bylyqmathclc;clearall;closeall;symsxyeq=exp(x*y)-2*x*y;z=int(int(eq,x,1,0),y,-1,1);vpa(
∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-
∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x