计算二重积分xydxdy,其中D是由y=x2,y=√x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:37:41
先发一半.剩下的我慢慢算.因为确实不好积再问:嗯再答:我这有个思路。你也试试,当然我最后肯定给你做出答案,就是觉得这个题出的不好。简直是考察不定积分能力再问:极坐标做的。。再问:我应该直接表上去。这是
先化极坐标目的是为了用后面的f(t)I=∫dt∫f(p^2)pdp=2π∫f(p^2)pdp=π∫f(p^2)dp^2=π
利用极坐标,令x=rsina,y=rcosa,r属于[0,1]a属于[0,π]原式=∫[0,π]∫[0,1](1+r^2sinacosa)/(1+r^2)rdrda=∫[0,π]∫[0,1]r/(1+
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r
再问:再问:第三小题再答:再问:对了,还有一道题,用二重积分求x=1,y=x,和y=1-x所围城的平面图形面积再问:谢谢你再答:这题纯碎瞎扯淡,用二重积分求这个面积简直。。再问:我算出来也是0.25,
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
换元:x=rcosθ,y=rsinθ,J=r,原式=∫dθ∫a^*rdr/√(a^-r^)=a^∫dθ*[-√(a^-r^)]|=a^∫dθ*|a|[1-|sinθ|]=2a^*|a|∫(1-sinθ
这是广义二重积分,有点难.不知你是否抄错题.再问:没有错啊,我的同学也是得你的这个答案,可是课本的答案是π¼(2㏑2-1),我晕了~再答:如果题没有抄错,那你那答案可能错了。其实你没有必要晕
两个关键点 其一 关于x=0 轴对称,其二 关于积分公式的记忆
==等等,手机上图再答:再答:分成两块积分再答:再答:两个1/2·y平方的上下限分别代入,得到两个关于x的式子,分别对0,1和1,2积分再答:嗯,前一张上略有不对再答:就是x没有分开再答:按后面的算
这是一个奇函数的对称区间的积分,结果为0.
看图片,不懂再问.再问:谢谢,我先看看
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
y=x²+1 和y=2x的交点是(1,2)
max(xy,1)=xy(xy≥1),1(xy