计算二重积分,其中积分区域D是由X轴.Y轴及直线X Y=2所围成的闭区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:47:52
计算二重积分,其中积分区域D是由X轴.Y轴及直线X Y=2所围成的闭区域
计算二重积分一题这是一个带绝对值的,∫∫|x^2 + y^2 -1 |d∝ 积分区域是x^2 +y^2

首先x^2+y^2-1=0找出它与底面相交为一个半径1的⊙管他三七二十一先把∫∫x^2+y^2-1d∝【x^2+y^2

求·二重积分∫∫(x+y)^2dxdy,其中积分区域D:x^2+y^2≤4

∫∫(x+y)^2dxdy=∫∫(x²+y²+2xy)dxdy=∫∫(x²+y²)dxdy(这里由于函数2xy关于x为奇函数,区域D关于y轴对称,所以∫∫2xy

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

二重积分 积分区域是椭圆

你把坐标换成极坐标,然后代入椭圆的方程,得出一个关于R和角度的方程,解出R,用角度的三角函数表示的,取舍一下,取正数的那个,这就是R的范围,从零到你得到的这个数

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

计算二重积分 ∫∫x^2dxdy 其中D是由椭圆 x^2/a^2+y^2/b^2=1 所围成的区域

一楼在做完第一个积分时少了个2倍,二楼的结果是正确的.不过一楼的方法更好些,二楼的方法一般的工科学生不会用.

二重积分 交换次序计算二重积分I=∫∫根号(y-x^2)dxdy 其中积分区域D是由0≤y≤2 绝对值X≤1

∫∫_D√(y-x²)dxdy=∫(-1-->1)dx∫(0-->2)√(y-x²)dy=∫(-1-->1)dx∫(0-->2)√(y-x²)d(y-x²)=∫

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

计算二重积分∫∫D(sinx/x)dxdy,其中D是由0≤x≤1,0≤y≤x所围成的闭区域

∫(从0到1)dx∫(从0到x)sinx/xdy=∫(从0到1)(sinx/x)*xdx=∫(从0到1)sinxdx=-cosx(0到1)=cos1-1再问:啊我知道了..谢谢啦~