计算二重积分,其中D由曲线x=y^2,x=3-2y^2所围成

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:37:13
计算二重积分,其中D由曲线x=y^2,x=3-2y^2所围成
计算二重积分:1、∫∫[D]cos(x+y)dxdy,其中D由y=x,y=pai以及x=0所围成

∫∫[D]cos(x+y)dxdy=∫dx∫cos(x+y)dy=∫[sin(x+π)-sin2x]dx=[cosx+(1/2)cos2x]|=-2

用极坐标计算二重积分计算∫∫x/ydxdy其中D是由曲线x^2+y^2=2ay(x>=0,a为正实数)与y轴所围成的闭区

积分区域为半个圆域,于是考虑用极坐标.令x=rcost,y=rsint,于是积分域为

计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域

积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5

计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

计算二重积分:∫∫D cos(x+y)dxdy,其中D由y=x,y=π,x=0所围成的区域

∫∫_Dcos(x+y)dσ=∫(0→π)dy∫(0→y)cos(x+y)dx=∫(0→π)dy∫(0→y)cos(x+y)d(x+y)=∫(0→π)sin(x+y)|(0→y)dy=∫(0→π)[s

计算二重积分∫∫3x/y² dxdy ,其中D由x=2,y=1/x和y=x围成.

先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分I=∫∫ydxdy,其中D是由x轴,y轴与曲线根号(x/a)+根号(y/b)=1所围成的

好做.再答:再问:方程的图像是怎么样的?怎么确定x是0到a?

计算二重积分∫∫ydxdy,其中D是由直线x=-2,y=0,y=2及曲线x=-√根号(2y-y^2)所围成的区域.

化成二次积分计算.经济数学团队帮你解答.请及时评价.谢谢!

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

二重积分的计算 题目是求∫∫(e的y/x次方)dxdy 其中D是由曲线y=x^2直线y=x以及x=1/2围成的区域

∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/