计算二重积分 y 根号(1 x^3) dxdy,其中D是由直线y=x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:52:20
计算二重积分 y 根号(1 x^3) dxdy,其中D是由直线y=x
用二重积分计算体积 x+y+z=3 x^2+y^2=1 z=0

用极坐标被积函数(3-r(sint+cost))rt从0到2pi;r从0都1结果3pi

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy

∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y

二重积分问题 (1)计算∫∫根号下(y^2-xy) dxdy,区域D={y=x,x=0,y=1} (2)区域D={(X,

∫∫根号下(y^2-xy)dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy)dx]dy=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y)d(1-x/y]dy=∫(0,1)[∫(0,y

计算二重积分I=∫∫(1+X+2y)dxdy ,D={(x,y) | 0≤x≤2,-1≤y≤3}

原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.

计算二重积分 ∫∫(2x+3y)dx 图形是 y=1-x^2 与y=x^2 所形成的区域

∫∫D(2x+3y)dx=∫(-1/√2→1/√2)dx∫(x²→1-x²)(2x+3y)dy=∫(-1/√2→1/√2)(2xy+3y²/2)|[x²→1-x

12.计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2小于等于3}

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

计算二重积分∫∫ 1/根号下 1+x^2+y^2 其中积分区域为{(x,y)|x^2+y^2小于等于3}

用极坐标:∫∫1/√(1+x^2+y^2)dxdy=∫(0,2π)dθ∫(0,√3)r/1/√(1+r^2)dr=2π[√(1+r^2)]|(0,√3)=2π(2-1)=2π

二重积分问题,计算二重积分(根号下(x^2+y^2)+y)dxdy,其中D使由x^2+y^2=4和(x+1)^2+y^2

对着电脑边录边做题,不能保证结果完全正确,只是给你提示方法,请自己认真验算一下.

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

计算二重积分∫∫3x/y² dxdy ,其中D由x=2,y=1/x和y=x围成.

先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的

计算二重积分I= ∫∫根号下1-x^2-y^2 dxdy 其中D:x^2+y^2=0 y>=0 (∫∫符号下为D) 要详

这个用极坐标令x=pcosa,y=psinaa∈[0,π/2]p∈[0,1]代入得原积分=∫[0,π/2]∫[0,1]√(1-p^2)*pdpda=∫[0,π/2]da∫[0,1]√(1-p^2)*p

二重积分 交换次序计算二重积分I=∫∫根号(y-x^2)dxdy 其中积分区域D是由0≤y≤2 绝对值X≤1

∫∫_D√(y-x²)dxdy=∫(-1-->1)dx∫(0-->2)√(y-x²)dy=∫(-1-->1)dx∫(0-->2)√(y-x²)d(y-x²)=∫

计算二重积分 y *根号(x^2+y^2) dxdy,其中D:x^2+y^2=0

用极坐标算x=ρcosαy=ρsinα积分区域D是上半圆,ρ∈[0,1],α∈[0,π]∫∫√(x^2+y^2)dxdy=∫dα∫ρ^2dρ(dα前的上限是π,下限是0;dρ的上限是1,下限是0)=∫

计算二重积分 ∫∫x(1+yf(x^2+y^2))dxdy,积分区间是由y=x^3,y=1,x=-1围成

积分区域是图中橙色部分与蓝色部分合起来,现作辅助线y=-x³,将区域分为橙色与蓝色两部分∫∫x(1+yf(x²+y²))dxdy=∫∫xdxdy+∫∫xyf(x²

计算二重积分I=∫∫ydxdy,其中D是由x轴,y轴与曲线根号(x/a)+根号(y/b)=1所围成的

好做.再答:再问:方程的图像是怎么样的?怎么确定x是0到a?

计算二重积分∫∫根号(x^2+y^2)dxdy区域D为x^2+y^2=1与x^2+y^2=4围成的圆环型闭区域

令x=pcosa,y=psina积分区域变成p∈[1,2],a∈[0,2π]则二重积分∫∫√(x^2+y^2)dxdy=∫[1,2]∫[0,2π]p*pdpda=∫[1,2]p*pdp∫[0,2π]d

计算二重积分∫∫根号(x+1)dxdy区域D为x^2+y^2小于等于4与y大于等于0

再问:请问可以用被积函数及积分区域的对称性来确定下列积分的值吗?再答: