计算二重积分 y 根号(1 x^3) dxdy,其中D是由直线y=x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:52:20
用极坐标被积函数(3-r(sint+cost))rt从0到2pi;r从0都1结果3pi
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
pi*(pi/2-1)
∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y
∫∫根号下(y^2-xy)dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy)dx]dy=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y)d(1-x/y]dy=∫(0,1)[∫(0,y
原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.
∫∫D(2x+3y)dx=∫(-1/√2→1/√2)dx∫(x²→1-x²)(2x+3y)dy=∫(-1/√2→1/√2)(2xy+3y²/2)|[x²→1-x
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
用极坐标:∫∫1/√(1+x^2+y^2)dxdy=∫(0,2π)dθ∫(0,√3)r/1/√(1+r^2)dr=2π[√(1+r^2)]|(0,√3)=2π(2-1)=2π
对着电脑边录边做题,不能保证结果完全正确,只是给你提示方法,请自己认真验算一下.
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的
这个用极坐标令x=pcosa,y=psinaa∈[0,π/2]p∈[0,1]代入得原积分=∫[0,π/2]∫[0,1]√(1-p^2)*pdpda=∫[0,π/2]da∫[0,1]√(1-p^2)*p
∫∫_D√(y-x²)dxdy=∫(-1-->1)dx∫(0-->2)√(y-x²)dy=∫(-1-->1)dx∫(0-->2)√(y-x²)d(y-x²)=∫
用极坐标算x=ρcosαy=ρsinα积分区域D是上半圆,ρ∈[0,1],α∈[0,π]∫∫√(x^2+y^2)dxdy=∫dα∫ρ^2dρ(dα前的上限是π,下限是0;dρ的上限是1,下限是0)=∫
积分区域是图中橙色部分与蓝色部分合起来,现作辅助线y=-x³,将区域分为橙色与蓝色两部分∫∫x(1+yf(x²+y²))dxdy=∫∫xdxdy+∫∫xyf(x²
好做.再答:再问:方程的图像是怎么样的?怎么确定x是0到a?
令x=pcosa,y=psina积分区域变成p∈[1,2],a∈[0,2π]则二重积分∫∫√(x^2+y^2)dxdy=∫[1,2]∫[0,2π]p*pdpda=∫[1,2]p*pdp∫[0,2π]d
再问:请问可以用被积函数及积分区域的对称性来确定下列积分的值吗?再答: