计算下列二重积分∫∫(3x 2y)do,其中D是由两坐标轴及直线x y=2所围成
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:58:34
先发一半.剩下的我慢慢算.因为确实不好积再问:嗯再答:我这有个思路。你也试试,当然我最后肯定给你做出答案,就是觉得这个题出的不好。简直是考察不定积分能力再问:极坐标做的。。再问:我应该直接表上去。这是
原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
用圆坐标变换,设x=rcosθ,y=rsinθ则r^2≤2rsinθ,r≤sinθ代入积分算得I=∫(0~2π)dθ∫(0~sinθ)r^2dr再计算即可.
分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
【数学之美】团队为你解答,如果解决问题请采纳.
∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-
∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y
使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/
∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x
这题可用分成两个区域积分.也可用换元法快速得到结果.令u=x+y,v=x-y,J(u,v)=1/2,利用二重积分换元法,计算可得值为e-e^-1再问:怎么分成两个区域积分呢?再答:x轴分,x轴上方一个
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
极坐标下积分表达式变为r^2*r*dr*doo是极角关键是积分区域的变化首先积分区域在第一象限,此外x
(ln2-1/2)*π/2
都是利用极坐标来积分1令x=pcosay=psina原式=∫(0到2π)da∫(0到2)pe^(p^2)dp=π∫(0到2)e^(p^2)d(p^2)=π(e^4-1)2令x=pcosay=psina
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/
x=rcosa,y=rsina,区域是x^2+y^2