计算三重积分椭球dv其中Ω是椭球面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:28:00
计算三重积分椭球dv其中Ω是椭球面
计算三重积分∫∫∫Z√(x∧2+y∧2)dv,其中Ω是由曲面z=x∧2+y∧2,平面z=1所围成的立体

再问:再问:请问为什么这样不行呢再答:不能直接将立体方程代入,那是曲面积分的算法因为三重积分的被积函数是建基于整个立体空间,而不只是外面的曲面方程这点你要记住了,以后学曲面积分时又会遇上同样问题了,所

求三重积分∫∫∫xy dv,其中Ω是由x^2+y^2=a^2,x^2+z^2=a^2围成的区域

直观上想象成这是一块铁,那两个圆柱筒围成的区域中,每一点的密度是xy,接下来就好做了.∫∫∫xydv=∫∫xy(∫dz)dxdy(此一步,是把这块铁分解成每个(x,y)处立着的铁线).其中∫dz是z从

计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域.

z=x²+y²+z²x²+y²+z²-z+1/4=1/4x²+y²+(z-1/2)²=(1/2)²{

关于积分区域Ω为椭球的三重积分

Ω为(x/a)²+(y/b)²+(z/c)²≤R²的形式.方法一:将椭圆域Ω转变为圆域Ω''作代换:u=x/a、v=y/b、w=z/c圆域Ω'':u²

求解三重积分求椭球体积!

对,x^2/a^2+y^2/b^2=1的面积为:πab,题中把1-z^2/c^2除到等号左边去化为:x^2/(a^2*1-z^2/c^2)+y^2/(b^2*1-z^2/c^2)=1所以面积为:π*根

计算三重积分∫∫∫(y^2+z^2)dv,积分区域是y^2=2x绕x轴旋转一周后和x=5形成的闭区域

采用柱坐标:x=x,y=rcosθ,z=rsinθ;dV=rdrdθdx;所以∫∫∫(Ω)(y^2+z^2)dV=∫(0→5)dx∫(0→2π)dθ∫(0→√(2x))r^2rdr=2π∫(0→5)d

【三重积分】∫∫∫=√(x^2+y^2)dv,其中Ω是曲面z=x^2+y^2,和平面z=1所围的立体.

Ω:p²≤z≤10≤p≤10≤θ≤2π原式=∫∫∫p·pdpdzdθ=∫(0,2π)dθ∫(0,1)p²dp∫(p²,1)dz=2π∫(0,1)p²(1-p&#

计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:x^2+y^2+z^2=a^2

原式=∫dθ∫dφ∫r²*r²sinφdr(作球面坐标变换)=2π∫sinφdφ∫r^4dr=2π[cos(0)-cos(π)]*a^5/5=4πa^5/5.

三重积分怎么计算?

化成三次积分

这是一题三重积分计算

是体积吧?该立体在XOY面的投影为:x²+y²=2ax,极坐标方程为:r=2acosθ∫∫∫1dxdydz=∫∫dxdy∫[0→(x²+y²)/a]1dz=(1

三重积分计算步骤

看定义域和被积函数,如果特殊情况,利用积分性质能简化积分

计算三重积分∫∫∫z^2dv,其中Ω是曲面z=(x^2+y^2)^(1/2),z=1,z=2所围成的区域

我不知道做的对不对,学的忘了好多,你参考一下吧!

三重积分计算:计算 ∫∫∫Ω√x²+y²+z² * dv ,其中Ω:x²+y&#

令x=rsinψcosθ,y=rsinψsinθ,z=rcosψ那么∫∫∫√(x²+y²+z²)dxdydz=∫∫∫(r*r²sinψ)drdψdθ=∫∫∫(r

三重积分计算球坐标∫∫∫Ωxe^(x²+y²+z²)/a² * dv,其中Ω:x

(1/a²)∫∫∫xe^(x²+y²+z²)dV=(1/a²)∫∫∫rsinφcosθe^(r²)*r²sinφdrdφdθ=(1