计算三重积分椭球dv其中Ω是椭球面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:28:00
再问:再问:请问为什么这样不行呢再答:不能直接将立体方程代入,那是曲面积分的算法因为三重积分的被积函数是建基于整个立体空间,而不只是外面的曲面方程这点你要记住了,以后学曲面积分时又会遇上同样问题了,所
直观上想象成这是一块铁,那两个圆柱筒围成的区域中,每一点的密度是xy,接下来就好做了.∫∫∫xydv=∫∫xy(∫dz)dxdy(此一步,是把这块铁分解成每个(x,y)处立着的铁线).其中∫dz是z从
z=x²+y²+z²x²+y²+z²-z+1/4=1/4x²+y²+(z-1/2)²=(1/2)²{
Ω为(x/a)²+(y/b)²+(z/c)²≤R²的形式.方法一:将椭圆域Ω转变为圆域Ω''作代换:u=x/a、v=y/b、w=z/c圆域Ω'':u²
对,x^2/a^2+y^2/b^2=1的面积为:πab,题中把1-z^2/c^2除到等号左边去化为:x^2/(a^2*1-z^2/c^2)+y^2/(b^2*1-z^2/c^2)=1所以面积为:π*根
采用柱坐标:x=x,y=rcosθ,z=rsinθ;dV=rdrdθdx;所以∫∫∫(Ω)(y^2+z^2)dV=∫(0→5)dx∫(0→2π)dθ∫(0→√(2x))r^2rdr=2π∫(0→5)d
Ω:p²≤z≤10≤p≤10≤θ≤2π原式=∫∫∫p·pdpdzdθ=∫(0,2π)dθ∫(0,1)p²dp∫(p²,1)dz=2π∫(0,1)p²(1-p
原式=∫dθ∫dφ∫r²*r²sinφdr(作球面坐标变换)=2π∫sinφdφ∫r^4dr=2π[cos(0)-cos(π)]*a^5/5=4πa^5/5.
化成三次积分
是体积吧?该立体在XOY面的投影为:x²+y²=2ax,极坐标方程为:r=2acosθ∫∫∫1dxdydz=∫∫dxdy∫[0→(x²+y²)/a]1dz=(1
看定义域和被积函数,如果特殊情况,利用积分性质能简化积分
我不知道做的对不对,学的忘了好多,你参考一下吧!
令x=rsinψcosθ,y=rsinψsinθ,z=rcosψ那么∫∫∫√(x²+y²+z²)dxdydz=∫∫∫(r*r²sinψ)drdψdθ=∫∫∫(r
(1/a²)∫∫∫xe^(x²+y²+z²)dV=(1/a²)∫∫∫rsinφcosθe^(r²)*r²sinφdrdφdθ=(1