计算∫∫Fds,∑为上半球面Z=√R²-x²-y²的下侧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:35:54
计算∫∫Fds,∑为上半球面Z=√R²-x²-y²的下侧
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2

为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部

求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积

两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d

regional FDs 和 regional

egionalFDs(regionalFinancialDirectors)区域金融总监regionalMDs(regionalManagingDirectors)区域董事经理

∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a

补平面:Σ1:z=0,x^2+y^2≤a^2,下侧,这样原曲面Σ与Σ1共同构成一个封闭曲面高斯公式:原式=∫∫∫(3x^2+3y^2+3z^2)dxdydz用球坐标=3∫[0-->2π]∫[0-->π

计算∫∫(x+y+z)dxdy+(y-z)dydz,其中∑为三个坐标平面和平面x=1,y=1,z=1所围成的立方体表面外

P=y-zQ=0R=x+y+z∂P/∂x=0∂Q/∂y=0∂R/∂z=1∫∫(x+y+z)dxdy+(y-z)dydz=∫∫∫(

top可以翻译为上面或者上吗?

可以的top[英][tɒp][美][tɑp]n.顶,顶部;(箱子)盖,(书页等的)上栏;首席;陀螺;adj.最高的;顶上的;头等的;最大的;vt.形成顶部;达到…的顶端;处于…的最前头;领导

计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域

Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^

利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2

为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分

计算I=∫∫1/(x2+y2+z2)dS,S是抛物面z=x2+y2与平面z=1所围立体的外表面

dS=√(1+4x^2+4y^2)dxdy,投影:x^2+y^2《1I=∫∫1/(x^2+y^2+(x^2+y^2)^2)*√(1+4x^2+4y^2)dxdy+∫∫1/(x^2+y^2+1)*dxd

计算I=∫∫x2zdxdy,S是抛物面z=x2+y2与平面z=1所围立体的外表面

R=x^2zRz=x^2由高斯公式:I=∫∫x2zdxdy=∫∫∫x^2dxdydz(xoy平面的投影D:x^2+y^2

计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围

积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^

计算三重积分∫∫∫(x/a+y/b+z/c)dV 积分域为三个坐标面和平面x/a+y/b+z/c=1(a,b,c>0)所

拆成∫∫∫(x/a)dV+∫∫∫(y/b)dV+∫∫∫(z/c)dV后用先重后单∫∫∫(x/a)dV=∫(x/a)dx∫∫dydz=abc/24所以I=abc/8

计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.

计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域

就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1

利用留数定理计算积分∫{[ln(1+z)]/z}dz,C:|z|=2

在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负

求面密度为μ的均匀半球壳对于z轴的转动惯量

给点分啊,大哥,怎么都是0悬赏分啊.我简单说下,就是按字面意思来列的表达式,质量乘以半径的平方,首先取样,0-2π积分指的是分割成一个个扇面,扇面上取试样与数值轴夹角为φ,试样近似一个正方形,表达出边

∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?求详细过程

把上半球面z=√(1-x^2-y^2)投影到xoy平面上,得圆x^2+y^2=1,利用极坐标,原积分=∫(sinθ)^3dθ∫r^4dr(r积分限0到1,θ积分限0到2π),∫r^4dr=1/5,∫(

计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1

这题用高斯公式做简单,做辅助曲面S‘:z=0,则S+S'构成闭合曲面,取外侧为正.设P=(x^3+e^ysinz,Q=-3x^2y,R=z,则ðP/ðx=3x^2,ðQ/