计算∫∫(x^3 az^2)dydz (y^3 ax^2)dzdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:21:26
计算∫∫(x^3 az^2)dydz (y^3 ax^2)dzdx
计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2

(e^xsiny-3y)对y求导得:e^xcosy-3(e^xcosy+x)对x求到得:e^xcosy+1考虑L1:(0,2)到(0.0)的直线段,则L和L1构成封闭曲线,逆时针方向,所围区域为D由格

计算∫L(x^2+3y)dx+(y^2-x)dy

P=x^2+3y,Q=y^2-xPy=3Qx=-1∫L(x^2+3y)dx+(y^2-x)dy+∫AO(x^2+3y)dx+(y^2-x)dy=-4∫∫Ddxdy=-16π∫AO(x^2+3y)dx+

计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/

∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a

补平面:Σ1:z=0,x^2+y^2≤a^2,下侧,这样原曲面Σ与Σ1共同构成一个封闭曲面高斯公式:原式=∫∫∫(3x^2+3y^2+3z^2)dxdydz用球坐标=3∫[0-->2π]∫[0-->π

计算∫(0,1)dx∫(x,1)e^(y^2)dy=

题目应该是e^(-y^2)交换积分次序:=∫(0,1)dy∫(0,y)e^(-y^2)dx=∫(0,1)ye^(-y^2)dy=1/2*∫(0,1)e^(-y^2)dy^2=1/2*(1-1/e)

计算积分 ∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy

画图看二次积分的区域D={(x,y)|0≤x≤1,x≤y≤1}={(x,y)|0≤y≤1,0≤x≤y}于是∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy=∫∫(D)siny^2dxdy=

计算二次积分∫(0,1)dy∫(√y,1)sin x^3 dx

交换积分次序 再问:能告诉我那些复杂的数学符号怎么打出来的吗比如积分符号还有简直像书本一样的规范是怎么做到的有加分哦再答:用mathtype, 见附件

计算二次积分:∫(1,3)dx∫(2,x-1)sin(y^2)dy

积分区域D:x-1≤y≤2,1≤x≤3视为Y型区域,即:1≤x≤y+1,0≤y≤2I=∫[0,2]sin(y²)dy∫[1,y+1]dx交换积分次序=∫[0,2]ysin(y²)d

计算积分∫(0,2)dx∫(x,2)e^(-y²)dy

把积分区域D画图,改换积分次序:∫(0~1)dx∫(x~1)e^(-y^2)dy=∫(0~1)dy∫(0~y)e^(-y^2)dx=∫(0~1)ye^(-y^2)dy被积函数的原函数是-1/2e^(-

计算二重积分 ∫dy∫e^(-x^2)dx

∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-

计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy

∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

计算坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,求α

与路径无关说明(3x^2y+ax^2y)对y求导的结果与x^3-4x^2y对x求导的结果一致3x^2+2ax^2=3x^2-8xy2ax^2=-8xy如果默认a为常数的话,就没的做了你确定积分式没写错

问一道格林公式的题计算 ∫xy^2dy-x^2ydx,其中C为圆周x^2+y^2=a^2.我计算到∫xy^2dy-x^2

∮xy^2dy-x^2ydx=∫∫(x^2+y^2)dxdy≠∫∫a^2dxdy!用高斯公式已将曲线积分化为了二重积分,是在整个区间D上,不是在圆周上.

计算∫(x^2-2y)dx+(x+y^2)dy其中L为三顶点分别为(0,0)(3,0)(3,4)的三角形正向边界

由格林公式,∂Q/∂x=1,∂y/∂y=-2∫(x^2-2y)dx+(x+y^2)dy=∫∫(1+2)dxdy=3∫∫1dxdy被积函数为1,积分结果是

计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)

Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-