计算I=∫∫√x² y²dxdy,D:x² y²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:53:53
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
答:设极坐标x=cosθ,y=sinθ,1
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.
用几何法,就是求半球的体积πA^2/2就可以了再问:关键就是不知道怎么求啦,嘿嘿,大大,过程也给我写下嘛您QQ多少,我想当面请教下咯再答:你看清楚这道题的几何意义就是求半径为a的上半球
原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^
这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0
原式=∫dθ∫[(rcosθ)/r²]rdr(极坐标代换)=∫cosθdθ∫dr=[sin(π/2)-sin0](1-0)=1.
∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x
记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y
积分域用x+y=π/2划分如下,对于函数cos(x+y),区域1为正值,区域2为负值.∫∫√[1-sin²(x+y)]dxdy=∫∫√[cos²(x+y)]dxdy=∫∫|cos(
这个用极坐标令x=pcosa,y=psinaa∈[0,π/2]p∈[0,1]代入得原积分=∫[0,π/2]∫[0,1]√(1-p^2)*pdpda=∫[0,π/2]da∫[0,1]√(1-p^2)*p
“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-
设x=rcosty=rsint-π/2
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/