计算(x-y)dx (x y)dy x2 y2其中L为上半椭圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:14:43
计算(x-y)dx (x y)dy x2 y2其中L为上半椭圆
x^2+xy+y^3=1,求dy/dx

解析2xdx+ydx+xdy+3y²dy=0(2x+y)dx+(x+3y²)dy=0(2x+y)dx=-(x+3y²)dydy/dx=(2x+y)/-(x+3y²

求解微分方程 x^2*dy/dx=xy-y^2

x^2*dy/dx=xy-y^2dy/dx=y/x-y^2/x^2u=y/xy=xuy'=u+xu'代入:u+xu'=u+u^2xu'=u^2du/u^2=dx/x-1/u=lnx+lnCCx=e^(

y/x=ln(xy) 求详 dy/dx

方法一(微分法)d(y/x)=d(ln(xy))(xdy-ydx)/x²=1/xy*d(xy)即(xdy-ydx)/x²=(ydx+xdy)/xy∴dy/dx=(xy+y²

y/x=ln(xy) 求dy/dx

两边求导(y'x-y)/x^2=(y+xy')/xyxy+x^2y'=xyy'+y^2y'=(xy-y^2)/(xy+x^2)

解微分方程 (x^2y^3+xy)dy=dx

令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³

xy=e^(x+y),求dx/dy

ydx/dy+x=(e^x)(e^y)dx/dy+(e^x)(e^y)dx/dy=[(e^x)(e^y)-x]/[y-(e^x)(e^y)]dx/dy=(xy-x)/(y-xy)dx/dy=x(y-1

微分方程x*dy/dx+y=xy*dy/dx怎么做

搞成变量分离的形式,或考虑下倒数等,化成比如欧拉方程,伯努利方程等形式,用公式套,多练习就好了.

dy/dx=1+x+y^2+xy^2

答:dy/dx=1+x+y^2+xy^2y'=(1+x)(1+y^2)y'/(1+y^2)=1+x(arctany)'=1+x积分得:arctany=x+x²/2+Cy=tan(x+x

设sin(x+y)=xy,求dy/dx.

cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]

dy/dx=(x^4+y^3)/xy^2

令y/x=u,dy=u+xdu,原方程化为:u+xdu/dx=x/(u^2)+u,即du/dx=1/(u^2)通解为:y=x*[(3x+3c)^(1/3)]

dy/dx=xy+x+y 如何积分?

dy=xy*dx+x*dx+y*dx两边同时积分y=y*1/2*x*x+1/2*x*x+xy(1-1/2*x*x-x)y=1/2*x*xy=x*x/(2-2x-x*x)+C*是乘号x*x是x的平方

dy/dx=(x+y^3)/xy^2

∵dy/dx=(x+y^3)/(xy^2)==>xy^2dy=(x+y^3)dx==>y^2dy/x^3=dx/x^3+y^3dx/x^4(等式两端同除x^4)==>d(y^3)/(3x^3)+y^3

解微分方程y^2+(x^2)(dy/dx)=xy(dy/dx)

y^2=(xy-x^2)dy/dxy^2/x^2=(y/x-1)dy/dxy/x=udy=udx+xduu^2=(u-1)(u-xdu/dx)u^2/(u-1)=u-xdu/dxxdu/dx=u-u^

微分方程求解 (x^2y^3+xy)dy=dx

令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³

xy+㏑ y+㏑ x=0 求dy/dx

两边同时求导x+x(dy/dx)+1*(dy/dx)/y+1/x=0合并同类项dy/dx=-y/x

求齐次微分方程dy/dx=y^2/xy-x^2

令y=xuy'=u+xu'代入方程:u+xu'=u^2/(u-1)xu'=u/(u-1)du(u-1)/u=dx/xdu(1-1/u)=dx/x积分;u-ln|u|=ln|x|+C1e^u/u=Cxe

dy/dx=xy/x^2-y^2

你要求什么?

求dy/dx+y/x=e^(xy)

令e^(xy)=u,y=lnu/xDy/dx=[(x/u)*(du/dx)-lnu]/x²,∴(1/ux)*(du/dx)-lnu/x²+lnu/x²=u即du/u