计算 其中D是有x^2 y^2=4及y轴所围成的半平面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:51:11
再问:极径r积分区域为什么是0
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
15/4∫cos²θdθ=15/4∫(cos2θ+1)/2dθ=15/8[∫cos2θdθ+∫dθ]=15/16∫cos2θd2θ+15/8∫dθ=15/16sin2θ|+15/4π=15/
∫∫_Df(x,y)dσ=∫(0→1)dy∫(0→y)x²√(1+y⁴)dx=∫(0→1)[√(1+y⁴)·y³/3]dy=(1/3)(1/4)∫(0→1)
∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r
用极坐标算x=ρcosαy=ρsinα积分区域D是上半圆,ρ∈[0,1],α∈[0,π]∫∫√(x^2+y^2)dxdy=∫dα∫ρ^2dρ(dα前的上限是π,下限是0;dρ的上限是1,下限是0)=∫
原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³
“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-
可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.
看图片,不懂再问.再问:谢谢,我先看看
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x