观察下列式子:-a b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:03:31
观察下列式子:-a b
定义一种新运算,观察下列式子:

已知:1★3=2×1-3×3=-73★(-1)=2×3-3×(-1)=9(原题3★(-1)=2×-3×(-1)=9,错误)(-5)★4=2×(-5)-3×4=-22(-4)★(-3)=2×(-4)-3

观察下列式子:第一个式子:5方-4方=3方;第二个式子:13方-12方=5方;第三个式子:25方-24方=7方.

(2n^2+2n+1)^2-(2n^2+2n)^2=(2n+1)^2就是:(2n平方+2n+1)平方-(2n平方+2n)平方=(2n+1)平方

观察下列算式,用含有自然数n的式子表示你发现的规律:

∵1³=1=1²1³+2³=﹙1+2﹚²=9=3²1³+2³+3³=﹙1+2+3﹚²=36=6

观察下列式子:1×3分之1=2分之1×(1-三分之一)

1×1/3+3×1/5+5×1/7……+2012×1/2013=1/2×(1-1/3+1/5-1/5+1/7-1/7……+1/2012-1/2013)=1/2×(1-1/2013)=1006/2013

观察下列式子,由此计算

解题思路:根据规律进行裂项计算解题过程:答案见附件

观察下列式子观察下列式子:3^2+4^2=5^2,8^2+6^2=10^2,15^2+8^2=17^2,24^2+10^

(1)35²+12²=37²(2)第n个式子为[(n+1)²-1]²+[2(n+1)]²=[(n+1)²+1]²

观察下列式子的特点并求值.

原式=(1-2)+(3-4)+(5-6)+…+(99-100)=(-1)+(-1)+(-1)+…+(-1)=-1×50=-50.

观察下列等式,找出规律.再想出与他两个相同类型的式子.

4949一÷7=------766再问:要两个】再答:8181一÷9=------988

观察下列式子:1+3=2

观察下列式子:1+3=221+3+5=321+3+5+7=42…所以1+3+…+(2n-1)=n2.故答案为:n2.

观察下列等式(式子中的“!”是一种运算符号,计算2012!/2011!

“!”是阶乘运算符号2012!/2011!=2012*2011*2010*.3*2*1/2011*2010*2009*.3*2*1=2012

观察下列算式,写出满足上述式子规律的一般公式

³√{(n+1)+(n+1)/[(n+1)³-1]}=(n+1)׳√{(n+1)/[(n+1)³-1]}(n=1,2,3,……)看着可能有些乱,将就着看吧

观察下列算式 把观察到的规律用含n的式子表示出来

再答:题目的第三个式子是错的,把第一个5改成2才对

观察下列等式(式子中“!”是一种数学运算符号,n是正整数):

原式=n(n−1)(n−2)(n−3)…×2×1(n−1)(n−2)(n−3)…×2×1=n.故答案为n.

观察下列式子变形的过程,

两边都除以a,得2=3这一步出问题了,a=0时不能这样做.