n*2的n次方前n项和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:29:11
裂项an=(n+2)/[n!+(n+1)!+(n+2)!]=(n+2)[n!(1+n+1+(n+1)(n+2))]=(n+2)/[n!(n+2)^2]=1/[n!(n+2)]=(n+1)/(n+2)!
a=(2n-1)×2^(n-1)是这个吗?Sn=1×1+3×2+5×4+……+(2n-1)×2^(n-1)2Sn=1×2+3×4+5×8+……+(2n-3)×2^(n-1)+(2n-1)×2^n相减2
an=(n-1)*2^(n-1)sn=(1-1)*2^(1-1)+(2-1)*2^(2-1)+.+(n-1)*2^(n-1)2sn=2*(1-1)*2^(1-1)+2*(2-1)*2^(2-1)+.+
运用错位相减法:an=n/2^nSn=a1+a2+a3+……+an=1/2^1+2/2^2+3/2^3+……+n/2^n(1/2)Sn=1/2a1+1/2a2+……+1/2an=1/2^2+2/2^3
an=(2n-1)(1/4)^n=n(1/4)^(n-1)-(1/4)^nSn=a1+a2+..+an=[summation(i:1->n){i(1/4)^(i-1)}]-(1/3)(1-(1/4)^
用错位相减来做再问:我们换了老师!为了跟上进度没有说过这个!可以给详细一点的过程吗!再答:将每一项乘以公比再相减
看不懂,能否写得明白点儿再问:就是这题看得懂我还问啊
a1=2a2-a1=3*2^(2-1)=6令cn=a(n+1)-an=3*2^(2n-1),则c1=a2-a1=6,cn/c(n-1)=4cn是首项是6公比是4的等比数列设cn的前n-1项和为s(n-
若n=2kSn=(4+3(2k-1)+1)/2+2^k-2=2^k+3k-1=2^(n/2)+3n/2-1若n=2k+1Sn=2^k+3k-1+3(2k+1)+1=2^k+9k+3=2^((n-1)/
an=2^na1=2a(n+1)/an=2,数列是以2为首项,2为公比的等比数列Sn=2×(2^n-1)/(2-1)=2^(n+1)-2
运用错位相减法:∵an=n/2^n∴Sn=1/2^1+2/2^2+3/2^3+……+(n-1)/2^(n-1)+n/2^n①①*(1/2)(1/2)Sn=1/2^2+2/2^3+.+(n-1)/2^n
Sn=1/3+2/3^2+3/3^3+...+n/3^n①Sn/3=1/3^2+2/3^3+3/3^4+...+n/3^(n+1)②①-②2Sn/3=1/3+1/3^2+1/3^3+...+1/3^n
n再问:思路以及过程是什麽??再答:这个是一个模型类,如果一个数列的通项是一个等差通项和一个等比数列的通项的乘积,有一个固定的方法的.乘公比再作差。sn=1/2+2/2^2+3/2^3+...+n/2
an=n(2^n-1)an=n*2^n-na1=1*2^1-1a2=2*2^2-2a3=3*3^3-3.an=n*2^n-nSn=a1+a2+a3+.+an=1*2^1-1+2*2^2-2+3*3^3
错位相减Sn=n*2^(n+1)
数列{1+2的n-1次方}的前n项和为1×n+(1+2+2^2+.+2^(n-1))=n+(1-2^n)/(1-2)=n+2^n-1
利用(n+1)^3-n^3=3*n^2+3*n+1,可得1^2+2^2+...+n^2=1/6*(n(n+1)(2n+1))
我来试试吧.an=2^n+2n-1Sn=a1+a2+...+an=(2+2-1)+(4+4-1)+...+(2^n+2n-1)=(2+4+...+2^n)+(2+4+...+2n)-n=2[1-2^n
这是典型的错位相减求和,要举一反三!你拿张纸,先把Sn求和表达式写出来,要求写出a1+a2…+an-1+an四个就行;接着再起一行,写出2Sn的表达式,也写出2a1+2a2…+2an-1+2an就行.
an=n+(1/2ⁿ)Sn=[(1+2+3+...+n]+[(1/2)+(1/2²)+.+(1/2ⁿ)]=n(n+1)/2+(1/2)[1-1/2ⁿ]/(