n! n^n无穷级数是是绝对收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:09:06
首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以
lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
显然级数为莱布尼茨级数,由于通项绝对值趋于0,故收敛而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,故原级数条件收敛按照你
对(n+1)!用斯特林公式,得到级数绝对收敛
(2^n)(a^n)=(2a)^n要使级数收敛,2a
只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^
先判断是否绝对收敛,如下:
利用交错级数的莱布尼茨判别法,对于交错级数∑(-1)^nUn,若{Un}单调下降趋于0,则级数收敛令Un=lnn/(n^p)(1)当p≤0时,可知|(-1)^nUn|不趋于0,所以级数发散(2)当p>
因为后项比前项的绝对值=[(n+1)!/(n+1)^(n+1)]/[n!/n^n]=n^n/(n+1)^n=1/(1+1/n)^n趋于1/e
∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n
当p1时,绝对收敛.当n足够大时,其一般项的绝对值为tan1/n^p-1/n^p(因为当x很小的时候有tanx>x),而lim(tan1/n^p-1/n^p)/(1/n^p)=0(n趋于无穷,罗比塔法
条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑
p>1,绝对收敛;0
令t=1/nlim(n→∞)(nsin1/n)=lim(t→0)(sint/t)=1通项的极限等于1而不等于0,所以此数列发散,既不是条件收敛,也不是绝对收敛.愿意解疑答惑.如果明白,并且解决了你的问
应用比较审敛法,|cosnα|
∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.
sin(2/n)>sin(2/n+1),limsin(2/n)=0,莱布尼兹定理,收敛limsin(2/n)/(2/n)=1,∑2/n发散,条件收敛
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛