行和元素之和特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:17:37
特征值是3,特征向量是[1,1,1]'要点是要看到a+b+c=[a,b,c]*[1,1,1]
考虑列向量x=(1,1,...,1)它和该矩阵的乘积是(a,a,...,a)它满足Ax=ax,因此a是特征值,x是特征向量
因为A乘列向量(1,1,1.,1)^T时相当于把A的各行加起来构成一个列向量
不是指一个矩阵化简之后的矩阵;111205243这个矩阵的主对角线上的元素是1、0、3
a为什么不能是0?题目也没说A是可逆矩阵再问:打漏了。。。是可逆矩阵再答:那么a不等于0是显然的,反证法可证;根据定义可知a是特征值,对应特征向量v的各元素全为1,即Av=av再问:为什么a是特征值呢
A的特征值为2,0,0.
写出行列式|λE-A|根据定义,行列式是不同行不同列的项的乘积之和要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann)所以特征多项式的n-1次项系数是-(a11
A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到
对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之
B第一列与各列相加能整理得1,……1,……1,……各行减第一行得到1,……0,……0,……则必有特正值1
A可逆应该是方阵,怎么是mn?由已知A(1,1,...)^T=a(1,1,...,1)^T所以a是A的特征值,(1,1,..,)^T是A的属于特征值a的特征向量所以1/a是A^-1的特征值,(1,1,
前提是该矩阵是方阵,这样所有元素均为1的列向量就是a对应的特征向量
证明:首先证明∑[i=1,n]λi^2=∑[i=1,n]∑[j=1,n]aijaji由于A^2的特征根为λ1^2,λ2^2,...,λn^2(想知道这个结论的证明可以另外定向提问)且特征跟的和即主对角
由已知,A(1,1,1)^T=(1/9)(1,1,1)^T所以A的每行元素的和都是1/9所以A的9个元素之和等于3*(1/9)=1/3.
因为AT×(1,1,1)T=4(1,1,1)T,所以,A的转置AT有一个特征值4所以,|AT-4I|=0转置一下,得|A-4I|=0所以,A有一个特征值4
必有一个特征值为a.事实上|A-rE|=0中把其余各行都加到第一行,你会发现第一行每个元素都成了a-r,当r=a时行列式为0,这说明r=a是行列式的一个根,即a是一个特征根.
利用特征值的定义和性质可以如图求出特征值是-2,1,3.经济数学团队帮你解答,请及时采纳.
你的邮箱?再问:lh07090808@126.com再答:已发请查收
貌似你问了两边.这两句话,都依赖于,矩阵有n个特征值(重根按重数计算)相似,迹相同,行列式相同,这个不依赖于矩阵有n个特征值,也不依赖于他们可对角化.
特征多项式f(a)=|aE-A|,f(a)=0的根即为特征值对于上(下)三角阵右边的行列式恰好是f(a)=(a-a11)(a-a22)...(a-ann)所以特征值自然就是对角线元素