行列式不为0 列向量线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:28:53
行列式不为0 列向量线性无关
设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为

A不对!例如:a1=(1,0,0),a2=(0,1,0)b1=(0,2,0),b2=(0,0,1)两向量组都线性无关,但不等价,谁也不能表示谁B正确.因为A,B等价,即A可经初等变换化成B初等变换不改

线性代数已知列向量组的秩为r,请问如何证明:列向量组中的任意r个线性无关的向量均构成它的一个极大线性无关组?(好像是用极

因为秩为r,再加一个向量a就线性相关(r+1个向量)了,用定义写出r+1向量的线性组合为0,当a的系数为0,与线性无关矛盾.当a的系数不为0.ka移等号另一边,k除过去即线性表出.

线性代数问题已知列向量组的秩为r,请问如何证明:列向量组中的任意r个线性无关的向量均构成它的一个极大线性无关组?(好像是

所谓极大无关组,说的专业一点就是“空间的基”.举个例子,三维空间的一组基是:(1,0,0)(0,1,0)(0,0,1).那么三维空间的任何一个向量都能由这组基来表示.比如有个向量(a,b,c),他用基

设A为三阶矩阵,三维列向量a1,a2,a3线性无关,

A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=

由n个线性无关向量作为列组成的矩阵秩为n…秩和线性无关什么关系?高手点播…

由n个线性无关向量作为列组成的矩阵秩为n最简单易懂的来讲,就是:矩阵的秩=矩阵的线性无关的向量的个数这里线性无关的向量有n个,那么组成的矩阵的秩肯定是n希望对你有帮助,望采纳,谢谢~

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

证明矩阵列向量组线性无关

提供两种证法如图,第二种方法要用到秩的性质.经济数学团队帮你解答,请及时采纳.

如果A矩阵列向量线性相关那么A矩阵是否行向量也线性相关 由A列向量线性相关得出A的行列式为0

这个是不对的..你说的A的行列式为0,就默认了A是nxn的方阵了.可是A可以是mxn的一般矩阵啊.比如A是3x5的矩阵.且A的秩r(A)=3,那么A的五个列向量的秩为3,列向量必然是线性相关的.但是三

行列式为零,那是行向量线性相关还是列向量线性相关

行向量线性相关,列向量也线性相关,二者都相关!因为经过初等行、列变换,一定能使某两行,某两列对应成比例!故二者都相关!

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

求证:矩阵A的列向量组线性相关 (AT A)的行列式为零

明白LZ的意思.是想问为什么R(A)=R(ATA),即A的秩等于ATA的秩是吧.我来证明一下这个命题.构造两个齐次线性方程组:(1)Ax=0,(2)(ATA)x=0如果这两个方程组同解,则两个方程组的

线性代数:有向量组a1,a2,a3,为什么由/a1,a2,a3/(行列式)不为i零,即可说a1,a2,a3线性无关?什么

a1,a2,a3应该都是3维向量吧,否则不存在/a1,a2,a3/行列式这么一说.那么a1,a2,a3是否线性无关,看是否存在不全为0的实数k1,k2,k3使得k1*a1+k2*a2+k3*a3=0,

向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为

选D.秩相同推出n维b1,b2...向量组的秩是s,所以其线性无关;若b1,b2...线性无关,则其秩等于向量个数,即为s,可推出r(a1,a2...)=r(b1,b2...).所以是等价的.再问:那

n维列向量线性无关的充要条件是什么

表述法有若干.我只说2种:m个n维列向量线性无关的充要条件是:这m个n维列向量中,不存在一个向量,其可由其余向量线性表示.m个n维列向量线性无关的充要条件是:不存在一组不全为零的对应系数,使这m个n维

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

线性代数行列式问题一个矩阵的行列式为零,为什么说明这个矩阵的行向量或者列向量就线性相关?

一个矩阵值行列式值为为0,它必然是方阵,由克莱姆法则知方程Ax=0若|A|=0,则该方程有非0解,则存在不全为0的k1,k2,k3...kn使得a1*k1加a2*k2加.an*kn=0,(其中a1,a

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.

向量组线性相关与相应向量组组成的行列式为0之间的关系?

要求行列式必须是n个n维的向量.如果是这样就是充要条件了

n个n维向量线性无关 则行列式不等于0 为什么?

n个n维向量线性无关,说明这n个n维向量的秩为n(n个极大线性无关组)既然满秩,那就意味着对应行列式为0!